首页 | 本学科首页   官方微博 | 高级检索  
     

适用于高必要嵌入维的混沌时间序列预测算法
引用本文:侯越先 何坯廉. 适用于高必要嵌入维的混沌时间序列预测算法[J]. 天津大学学报(自然科学与工程技术版), 1999, 32(5): 594-598
作者姓名:侯越先 何坯廉
作者单位:天津大学电子信息工程学院
摘    要:针对现有的混沌时间序列预测算法--延迟坐标状态空间重构法不能对必要嵌入维较高的奇异吸引子进行有效预测问题,分析表明了高嵌入维时预测精度下降的原因在于 构空间的全局Lyapunov指数谱的变化。通过引入仿射变换,改善了高维重构空间的全局Lyapunov指数谱的性状,并由此给出了适用于高必要嵌入维的预测算法。仿真结果很好地支持了这一设想。

关 键 词:混沌时间序列 状态空间重构 延迟坐标 预测算法

RECONSTRUCTING HIGH DIMENSION PHASE SPACE: AN IMPROVED APPROACH TO CHAOTIC TIME SERIES FORECASTING
Hou Yuexian, He Pilian, Wang Lei. RECONSTRUCTING HIGH DIMENSION PHASE SPACE: AN IMPROVED APPROACH TO CHAOTIC TIME SERIES FORECASTING[J]. Journal of Tianjin University(Science and Technology), 1999, 32(5): 594-598
Authors:Hou Yuexian   He Pilian   Wang Lei
Abstract:Though a popular and widely used forecast algorithm for chaotic time series, the delay coordinate method in some extent leaves much to be desired. For example,our experiment and literature indicate that the forecast precision of algorithm would almost monotonously descend after it reaches the peak value at a certain embedding dimension. On the other hand,there is a theoretical demand that the embedding dimension should be greater than the twice box-counting dimension of the chaotic attractor in the full phase space. The demand infers that the current algorithm is not fit to reconstruct the high dimension strange attractor- In this paper we prove that the cause of the precision descent with the increase of embedding dimension should be due to the change of the universal Lyapunov exponent spectrum. Therefore,we introduce an affine transform to improve the character of the Lyapunov exponent spectrum. Moreover,we propose an improved forecast algorithm for the high essential embedding dimension. The outcome of computer simulation perfectly support our idea.
Keywords:Chaotic Time Series Phase Space Reconstruct Delay Coordinate Embedding Dimension Lyapunov Exponent  
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号