首页 | 本学科首页   官方微博 | 高级检索  
     

基于局部线性嵌入与主成分分析的人脸识别方法
引用本文:熊明,王汝言,唐琳. 基于局部线性嵌入与主成分分析的人脸识别方法[J]. 重庆邮电大学学报(自然科学版), 2009, 21(1): 92-94
作者姓名:熊明  王汝言  唐琳
作者单位:1. 重庆邮电大学,通信与信息工程学院,重庆,400065
2. 中国电信股份有限公司,珠海分公司,珠海,519002
基金项目:国家高技术研究发展计划(863计划),重庆市教委项目,教育部新世纪优秀人才支持计划和重邮博士启动基金 
摘    要:针对主成分分析(PCA)算法对数据进行向量化,破坏初始数据的局部结构信息的缺点,提出了将局部线性嵌入(LLE)与PCA相结合的人脸识别算法。先采用LLE提取的初始数据保留了人脸局部结构信息的低维特征,再利用PCA计算低维数据的主要成分,最后根据各人脸的主要成分之间的欧式距离判断是否匹配。对比实验表明,该算法在明显提升算法效率的同时,保证了较高的识别率。

关 键 词:人脸识别  识别率
收稿时间:2008-09-08

Face recognition based on locally linear embedding and principal component analysis
XIONG Ming,WANG Ru-yan,TANG Lin. Face recognition based on locally linear embedding and principal component analysis[J]. Journal of Chongqing University of Posts and Telecommunications, 2009, 21(1): 92-94
Authors:XIONG Ming  WANG Ru-yan  TANG Lin
Affiliation:School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R.China
Abstract:Focusing on the disadvantage that the principal component analysis (PCA) algorithm destroy the primary data of local structural information when it vectors the data, a face recognition algorithm that combines the locally linear embedding (LLE) with PCA was proposed. First, the low-dimensional features from the initial data which preserving the local structure information of face image was extracted by LLE. Secondly, the main components of the low-dimensional data with PCA were calculated. At last, the main components were judged whether they are matching or not according to their Euclidean distance. Comparative experimental result shows that this algorithm keeps a high recognition rate when improving the arithmetic efficiency.
Keywords:LLE  PCA
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号