摘 要: | 针对传统乳腺超声影像分割算法存在准确率低、精度低且耗时长等问题,提出基于深度学习的三维乳腺超声影像自适应分割算法。首先预处理图像,采用深度多示例学习方法检测病变图像块,删除正常图像块。然后对乳腺超声影像数据集扩增处理,用于神经网络训练。其次构建残差卷积神经网络模型,设计残差学习单元,结合扩增数据集形成特征映射,采用softmax函数训练网络并进行特征块判断,并结合阈值设置实现三维乳腺超声影像自适应分割。实验结果表明,该算法能更细致地完成图像分割,算法平均运行耗时为52.3 s,图像分割精度为95.5%,且F1分数值高,整体性能佳,为卷积神经网络分割应用提供参考。
|