首页 | 本学科首页   官方微博 | 高级检索  
     


Quantile Double AR Time Series Models for Financial Returns
Authors:Yuzhi Cai  Gabriel Montes‐Rojas  Jose Olmo
Affiliation:1. College of Business, Economics and Law, Swansea University, , UK;2. City University London, , UK;3. ARAID and Centro Universitario de la Defensa de Zaragoza, , Spain
Abstract:We develop a novel quantile double autoregressive model for modelling financial time series. This is done by specifying a generalized lambda distribution to the quantile function of the location‐scale double autoregressive model developed by Ling (2004, 2007). Parameter estimation uses Markov chain Monte Carlo Bayesian methods. A simulation technique is introduced for forecasting the conditional distribution of financial returns m periods ahead, and hence any for predictive quantities of interest. The application to forecasting value‐at‐risk at different time horizons and coverage probabilities for Dow Jones Industrial Average shows that our method works very well in practice. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:Bayesian methods  density forecasts  generalized lambda distribution  quantile function  quantile forecasts
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号