首页 | 本学科首页   官方微博 | 高级检索  
     

基于多层次动态门控推理网络的文本蕴含识别
引用本文:张芮,杨煦晨,琚生根,刘宁宁,谢正文,王婧妍. 基于多层次动态门控推理网络的文本蕴含识别[J]. 四川大学学报(自然科学版), 2020, 57(2): 277-283
作者姓名:张芮  杨煦晨  琚生根  刘宁宁  谢正文  王婧妍
作者单位:四川大学计算机学院,成都610065;四川大学计算机学院,成都610065;四川大学计算机学院,成都610065;四川大学计算机学院,成都610065;四川大学计算机学院,成都610065;四川大学计算机学院,成都610065
基金项目:四川省新一代人工智能重大专项(2018GZDZX0039); 四川省科技厅重点研发项目 (2018GZ0182)
摘    要:现有的文本蕴含模型通常计算一次词级别注意力得到两段文本在不同层面的交互特征,但对于文本不同层面的理解,不同重要词的注意力应该是不同的,并且一次词级注意力推理仅能捕捉到文本对局部特征.针对这个问题,提出一种多层次动态门控推理网络,该网络结合了词级别信息的细粒度推理和句子级别门控机制来动态捕捉文本对的语义信息,并采用不同注意力计算方式提取文本对不同层面的语义特征,共同推理文本对的蕴含关系.本文在两个文本蕴含数据集上均做了实验,相较于基准模型和现有主流模型,准确率提升了0.4%~1.7%,通过消融分析,进一步验证了本文模型各部分结构的有效性.

关 键 词:多层次动态推理  sgMatch-LSTM  注意力机制  文本蕴含
收稿时间:2019-08-26
修稿时间:2019-09-27

Multi level dynamic gated inference network for recognizing textual entailment
ZhangRui,YANG Xu-Chen,JU Sheng-Gen,LIU Ning Ning,XIE Zheng-Wen and WANG Jing-Yan. Multi level dynamic gated inference network for recognizing textual entailment[J]. Journal of Sichuan University (Natural Science Edition), 2020, 57(2): 277-283
Authors:ZhangRui  YANG Xu-Chen  JU Sheng-Gen  LIU Ning Ning  XIE Zheng-Wen  WANG Jing-Yan
Abstract:Most existing models of recognizing textual entailment (RTE) get the interaction features between a premise and a hypothesis by an attention matrix at word level. However, the attention of important words should be different with the degree of understanding from diverse aspects, and only the local features are captured. To solve the problem above, the model with Multi level Dynamic Gated Inference Network (MDGIN) is proposed, which combines the fine grained word level information and sentence level gating mechanism to dynamically capture the relationships of text pairs. Moreover, the model extracts the different semantic features by diverse attention ways. In this paper, experiments are carried out on two textual datasets. Compared with the benchmark models and the existing mainstream models, the accuracy is improved by 0.4%~1.7%. The effectiveness of each part of the model is further verified by ablation analysis.
Keywords:Multi-level Dynamic Inference   sgMatch-LSTM   Attention Mechanism   Textual Entailment
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号