首页 | 本学科首页   官方微博 | 高级检索  
     

BP神经网络的改进及其应用
引用本文:张文鸽,吴泽宁,逯洪波. BP神经网络的改进及其应用[J]. 河南科学, 2003, 21(2): 202-206
作者姓名:张文鸽  吴泽宁  逯洪波
作者单位:1. 郑州大学环境与水利学院,河南,郑州,450002
2. 黄河水利委员会,河南,郑州,450003
基金项目:河南省自然科学基金项目(004040600)
摘    要:在分析BP神经网络建模步骤的基础上,针对BP神经网络某些不足,提出了几点改进措施。首先对原始数据进行了非线性规格化;其次,提出了记忆式初始权值和阀值;最后以确定性系数最大为依据进行参数优选,并将改进后的BP神经网络应用于需水量预测。结果表明,改进后的BP神经网络不仅提高了BP神经网络预测的精度,而且加快了BP网络运行时的收敛速度。

关 键 词:人工神经网络  BP神经网络  需水量  预测
文章编号:1004-3918(2003)02-0202-05
修稿时间:2002-12-10

Improvement and application to BP neural network
Abstract:Based on analyzing the procedure to establish the model for BP Neural Network and aimed at some deficiencies that exit in BP Neural Network, several improvements to BP Neural Network are come out. At first, original data are non-linear regularized, then remembrance preliminary weight and valve are put forward, and at last parameters are chosen on the basis of the maximum determining coefficient. And the improved BP Neural Network is applied to water demand prediction. The case shows that the improved BP Neural Network not only can improve prediction precision but also can expedite convergence pace.
Keywords:artificial neural network  BP neural network  water demand  prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号