首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于扩展Kalman滤波器的神经网络学习算法
引用本文:李江,杨慧中. 一种基于扩展Kalman滤波器的神经网络学习算法[J]. 东南大学学报(自然科学版), 2004, 0(Z1)
作者姓名:李江  杨慧中
作者单位:江南大学系统工程研究所 无锡214122(李江),江南大学系统工程研究所 无锡214122(杨慧中)
基金项目:国家高技术研究发展计划 (863计划 )资助项目 (2 0 0 2AA412 12 0 )
摘    要:为了解决前馈神经网络BP算法在处理非线性对象时 ,收敛速度慢 ,易陷入局部极值 ,需调节参数多等的缺陷 ,提出将扩展卡尔曼滤波 (EKF)算法引入神经网络的学习中 .把前馈网络的所有权值、阈值作为EKF算法的状态 ,网络输出作为EKF的观测 .同时为了防止滤波发散 ,对算法做了改进 .仿真结果表明 ,该算法比BP算法在收敛速度、抗噪能力方面都有明显提高 ,同时还保证了一定的泛化能力

关 键 词:前馈神经网络  BP算法  扩展Kalman滤波  滤波发散

Learning algorithm for neural networks based on extended Kalman filter
Li Jiang Yang Huizhong. Learning algorithm for neural networks based on extended Kalman filter[J]. Journal of Southeast University(Natural Science Edition), 2004, 0(Z1)
Authors:Li Jiang Yang Huizhong
Abstract:Since back propagation (BP) algorithm is defective in rapidity of convergence an d apt to trap into local extreme value, and it also has too many parameters to b e adjusted when it is applied to nonlinear objects, an extended Kalman filtering (EKF) algorithm is presented and used for training artificial neural networks ( ANN). It regards all the weight values and threshold values as the states, a nd the outputs of the network as the observing values for the Kalman filter in t he feedforward networks. Furthermore, the EKF algorithm is improved to prevent d ivergence. Simulation results show that the EKF algorithm is evidently superior to BP algorithm in the rapidity of convergence, the ability of resisting noise and the ability of generalization.
Keywords:feedforward neural networks  BP algorithm  extended Kalman filtering  filtering divergence 
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号