首页 | 本学科首页   官方微博 | 高级检索  
     

基于量化概念格的关联规则挖掘
引用本文:王德兴,胡学钢,王浩. 基于量化概念格的关联规则挖掘[J]. 合肥工业大学学报(自然科学版), 2002, 25(5): 678-682
作者姓名:王德兴  胡学钢  王浩
作者单位:合肥工业大学,计算机与信息学院,安徽,合肥,230009
基金项目:国家自然科学基金资助项目 (69985 0 0 4),安徽省教委基金资助项目 (2 0 0 0 j1168zd)
摘    要:在概念格的内涵中引入等价关系并将其外延量化 ,得到量化概念格。利用量化概念格可以清晰地表示知识 ,从而便于挖掘包括关联规则在内的多种规则 ,与经典的 A priori算法相比较 ,规则表示更简捷、直观 ,尤其重要的是用户可根据自己的兴趣交互地挖掘关联规则 ,不需要计算频繁项目集 ,因而提高了挖掘规则的效率 ,适用于大型数据库中关联规则的挖掘

关 键 词:数据挖掘  关联规则  概念格
文章编号:1003-5060(2002)05-0678-05
修稿时间:2002-05-23

Algorithm of mining association rules based on Quantitative Concept Lattice
WANG De xing,HU Xue gang,WANG Hao. Algorithm of mining association rules based on Quantitative Concept Lattice[J]. Journal of Hefei University of Technology(Natural Science), 2002, 25(5): 678-682
Authors:WANG De xing  HU Xue gang  WANG Hao
Abstract:The Quantitative Concept Lattice (QCL) evolves from concept lattice by introducing equivalent relation to their intensions and substituting the number of instance in extensions for their extensions. Knowledge on the QCL can be clearly discovered and some kinds of rules such as association rules easily mined. In comparison with Apriori algorithm, rules are presented succinctly and visually. Above all, users can mine association rules according to their subjective interests,and by using the algorithm of mining association rules on the QCL,frequent item sets need not be calculated, then the efficiency of mining association rule is improved. Therefore,the presented algorithm is suitable to the mining of association rules in large databases.
Keywords:data mining  association rule  concept lattice  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号