首页 | 本学科首页   官方微博 | 高级检索  
     

粗糙集CMAC神经网络故障诊断策略
引用本文:冯远静,李良福,冯祖仁. 粗糙集CMAC神经网络故障诊断策略[J]. 华侨大学学报(自然科学版), 2004, 25(3): 318-321
作者姓名:冯远静  李良福  冯祖仁
作者单位:西安交通大学系统工程研究所,陕西,西安,710049;西安交通大学系统工程研究所,陕西,西安,710049;西安交通大学系统工程研究所,陕西,西安,710049
基金项目:国家自然科学基金资助项目 ( 6 0 175 0 15 )
摘    要:提出一种基于粗糙集CMAC神经网络的智能互补融合的诊断策略.该策略利用粗糙集理论对数据样本进行数据浓缩.提取初步的诊断规则.对初步的诊断规则通过神经网络进行粗映射,利用神经网络的分类逼近能力,建立故障状态空间到诊断空间的精确映射.大大提高了神经网络的收敛速度和逼近精度.将该神经网络应用于的变压器故障诊断实例.结果表明.该神经网络具有分类逼近能力强.计算量小等优点.诊断正确率比普通神经网络的诊断正确率高.

关 键 词:粗糙集  神经网络  故障诊断  变压器
文章编号:1000-5013(2004)03-0318-04

Rough Set-Based CMAC Neural Network for Fault Diagrosis
Feng Yuanjing Li Liangfu Feng Zuren. Rough Set-Based CMAC Neural Network for Fault Diagrosis[J]. Journal of Huaqiao University(Natural Science), 2004, 25(3): 318-321
Authors:Feng Yuanjing Li Liangfu Feng Zuren
Abstract:A rough set based CMAC neural network is put forward as intelligent complementary and blending tactics of diagnosis. This tactics carry out data compaction on data samples and extract initial diagnostic rule by using rough set theory. To carry out rough mapping on the initial diagnostic rule through neural network and to use the sort approximation ability of neural network, an exact mapping from space of fault state to space of diagnosis is established by which convergence rate and approximation accuracy are greatly improved. This neural network is applied to the example of fault diagnosis of transformer. The result shows that the neural network is strong in sort approximation ability and small in workload of computation and high in rate of correct diagnosis, as compared with that of conventional neural network.
Keywords:rough set   neural network   fault diagnosis   transformer
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号