首页 | 本学科首页   官方微博 | 高级检索  
     

陪集图的同构与自同构
摘    要:令G是一个有限图,H是G的无核子群,D是形如HgH(gH)的一些双陪集的并,且满足D=D-1。记(Cos(G,H,D)表示G关于H和D的陪集图,A=Aut(Cos(G,H,D))。用RH(G)表示G在H的全体右陪集所在的集合Ω=[G:H]上的右乘置换表示,σ(g)表示g∈G通过共轭作用诱导在G上的自同构。本文不但证明了NA(RH(G))=RH(G)Aut(G,H,D)且RH(G)∩Aut(G,H,D)=I(H),其中Aut(G,H,D)={α∈Aut(G)|Hα=H,Dα=D},I(H)={σ(h)|h∈H},而且证明了Cos(G,H,D)是一个CI-图当且仅当对任意的σ∈SΩ,满足RH(G)σ≤A,必存在a∈A使得RH(G)a=RH(G)σ。作为对本文两个定理的应用,本文考虑了一类线性群上陪集图的CI-性问题及其在同构意义下的计数问题。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号