首页 | 本学科首页   官方微博 | 高级检索  
     

从加权Bloch空间到Qk(p,q)空间的复合算子
引用本文:龙见仁, 伍鹏程. 从加权Bloch空间到Qk(p,q)空间的复合算子[J]. 华南师范大学学报(自然科学版), 2012, 44(1).
作者姓名:龙见仁  伍鹏程
作者单位:1.贵州师范大学数学与计算机科学学院
摘    要:
假设$phi$是单位圆$D$上一个解析自映射,$X$是单位圆$D$上一个Banach空间. 定义$X$上复合算子:$C_{phi}: C_{phi}(f)=f o phi$,对所有的$fin X$. 本文利用$K-$Carleson测度刻画了$B_{log}^{alpha}(B_{log,0}^{alpha})$空间到$Q_{k}(p, q)(Q_{k, 0}(p, q))$空间的复合算子的有界性,以及$B_{log}^{alpha}(B_{log,0}^{alpha})$空间到$Q_{k,0}(p, q)$空间的复合算子的有界性和紧性.

关 键 词:复合算子  加权$Bloch$空间  $Q_{K}(p   q)$空间  $K$-Carleson 测度  紧性  有界性
收稿时间:2011-01-05
修稿时间:2011-08-25

Composition operators from weighted Bloch spaces to Qk(p,q) spaces
Composition operators from weighted Bloch spaces to Qk(p,q) spaces[J]. Journal of South China Normal University (Natural Science Edition), 2012, 44(1).
Abstract:
Suppose $phi$ is an analytic map of the unit disk $D$ into itself, $X$ is a Banach space of analytic functions on $D$. Define the composition operator $C_{phi}: C_{phi}(f)=f o phi$, for all $fin X$. In this paper,we use K-carleson measure to discuss the bounded composition operators from $B_{log}^{alpha}(B_{log,0}^{alpha})$ to $Q_{k}(p, q)(Q_{k,0}(p, q))$ and the bounded and compact composition operators from $B_{log}^{alpha}(B_{log,0}^{alpha})$ to $Q_{k,0}(p, q)$, where $0alphainfty$.
Keywords:Composition operators  Weighted Bloch spaces  Q_{K}(p   q) space  K-Carleson measure  Compactness  Boundedness
点击此处可从《华南师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华南师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号