首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进YOLOv3网络的卡尔曼社交距离检测与追踪
引用本文:焦帅,吴迎年,张晶,孙乐音. 基于改进YOLOv3网络的卡尔曼社交距离检测与追踪[J]. 科学技术与工程, 2022, 22(22): 9712-9720
作者姓名:焦帅  吴迎年  张晶  孙乐音
作者单位:1.北京信息科技大学自动化学院,北京 100192;3. 智能物联与协同控制研究所,北京 100192;1.北京信息科技大学自动化学院,北京 100192;2.高端装备智能感知与控制北京市国际科技合作基地,北京 100192;3. 智能物联与协同控制研究所,北京 100192
基金项目:2019科技部高端专家引进项目(G20190201031); 促进高校内涵发展-应急攻关项目(5212010976); 北京信息科技大学 2019 年教改重点资助项目(2019JGZD02); 2021年国家级大学生创新创业训练计划项目。
摘    要:为了预防新冠肺炎的传播,在佩戴口罩的同时,保持一定的社交安全距离是必要的。为解决现有的目标检测算法在社交距离检测中无法同时满足检测的实时性、准确性以及在复杂场景中存在遮挡、小尺度目标等问题,提出基于YOLOv3的改进算法DPPY(Dilated Pyramid-Pooling with YOLOv3)。首先使用空洞卷积参与到YOLOv3的核心图像处理结构中,然后引入密集型连接网络进一步融合不同层之间的连接,并且在这基础上还模仿了空间金字塔结构处理输入数据的尺寸问题,最后将这些处理结果一起与待追踪物体与彼此间的前后位置进行更好的关联并选用卡尔曼滤波器这个工具来更好地处理。若行人彼此间靠的过于紧密,则标红发出警报,以便更好地提醒相关人员注意。结果表明:与传统的YOLOv3算法相比,DPPY算法检测速度更快,检测精度更高。检测速度达到了34帧/s,平均准确率(Average Precision, AP)提高了9.1 %,并且在大、中、小目标检测中平均准确率均值(mean Average Precision, mAP)分别提高了7.8 %、8.2 %、8.9 %。

关 键 词:目标检测   目标追踪   卡尔曼滤波   社交距离   深度学习
收稿时间:2021-08-30
修稿时间:2022-05-16

Social Distance Detection and Tracking Algorithm Based on Improved YOLOv3 and Kalman Filter
Jiao Shuai,Wu Yingnian,Zhang Jing,Sun Yueyin. Social Distance Detection and Tracking Algorithm Based on Improved YOLOv3 and Kalman Filter[J]. Science Technology and Engineering, 2022, 22(22): 9712-9720
Authors:Jiao Shuai  Wu Yingnian  Zhang Jing  Sun Yueyin
Affiliation:1.School of Automation Beijing Information Science and Technology University, Beijing 100192, China; 3.Institute of Intelligent IOT and Collaborative Control, Beijing 100192, China
Abstract:In order to prevent COVID-19 from spreading, it is necessary to maintain a certain social security distance while wearing a mask. In order to solve the problems that the existing object detection algorithms can not meet the real-time and accuracy of social distance detection at the same time, and there are occlusion and small-scale objects in complex scenes, an improved algorithm DPPY (Dilated Pyramid-Pooling with YOLOv3) based on YOLOv3 is proposed. Firstly, use the dilated convolution to participate in the core image processing structure of YOLOv3, and then introduce a dense connection network to further merge the connections between different layers, and on this basis, it also imitates the spatial pyramid structure to deal with the size of the input data, and finally these processing results are better correlated with the objects to be tracked and the front and back positions of each other, and the Kalman filter tool is selected for better processing. If the pedestrians are too close to each other, the warning will be issued in red to better remind the relevant personnel to pay attention. The results show that DPPY algorithm has faster detection speed and higher detection accuracy than traditional YOLOv3 algorithm. The detection speed reaches 34 frames per second, the average precision (Average Precision, AP) is increased by 9.1 %, and the mean average precision (mean Average Precision, mAP) is increased by 7.8 %, 8.2 %, and 8.9 % in large, medium and tiny target detection, respectively.
Keywords:target detection   target tracking   Kalman filter   social distance   deep learning
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号