首页 | 本学科首页   官方微博 | 高级检索  
     

基于CPA-OSELM的热轧带钢厚度在线预测
引用本文:肖思竹,张飞,黄学忠,肖雄,易忠荣. 基于CPA-OSELM的热轧带钢厚度在线预测[J]. 科学技术与工程, 2022, 22(22): 9686-9694
作者姓名:肖思竹  张飞  黄学忠  肖雄  易忠荣
作者单位:北京科技大学高效轧制及智能制造国家工程研究中心;广西北港新材料有限公司技术研究院;广西柳州钢铁集团公司热轧板带厂
基金项目:广西重点研发计划(桂科AB21196025);北海市科技计划(BHSK2019017)
摘    要:为解决自动厚度控制(automatic gauge control,AGC)系统反馈滞后、耦合强、厚度偏差大等问题,本文提出了一种基于食肉植物算法(carnivorous plant algorithm, CPA)的在线顺序极限学习机(online sequential extreme learning machine, OSELM)预测算法。首先,基于从现场采集的相关数据,建立了OSELM在线厚度预测模型。然后为了提高模型的准确性及稳定性,采用CPA方法优化OSELM的权重和偏置。在此基础上,运用自学习方法进一步提高模型的预测精度。最后,通过实验验证基于CPA-OSELM预测模型的有效性。实验结果表明:基于CPA-OSELM的方法能够对不同规格带钢的出口厚度进行高精度在线预测,预测结果可用于提升AGC模型的控制精度,为提升带钢产品质量奠定基础。

关 键 词:热轧带钢;在线预测;在线顺序极限学习机(OSELM);食肉植物算法(CPA);自学习
收稿时间:2021-11-10
修稿时间:2022-05-11

Online prediction of hot-rolled strip thickness based on CPA-OSELM
Xiao Sizhu,Zhang Fei,Huang Xuezhong,Xiao Xiong,Yi Zhongrong. Online prediction of hot-rolled strip thickness based on CPA-OSELM[J]. Science Technology and Engineering, 2022, 22(22): 9686-9694
Authors:Xiao Sizhu  Zhang Fei  Huang Xuezhong  Xiao Xiong  Yi Zhongrong
Affiliation:National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, University of Science and Technology Beijing
Abstract:An online sequential extreme learning machine (OSELM) algorithm with self-learning capability based on carnivorous plant algorithm (CPA) was proposed to solve the problem of feedback lag, strong coupling, and large thickness deviation in thickness prediction in automatic gauge control (AGC) system. Firstly, an online thickness prediction model of OSELM was established based on the data collected from hot rolling site. Next, in order to improve the model accuracy and stability, a CPA method was used to optimize the weights and the biases of OSELM. On this basis, a self-learning method was applied to further improve the prediction accuracy. Finally, the effectiveness of the prediction model based on CPA-OSELM was verified by experiments. The experimental results show that the method based on CPA-OSELM can predict the delivery thickness of different specifications strip online with high accuracy. The prediction results can be used to improve the control accuracy of the AGC system, and provide a firm basis for improving the quality of rolled strip products.
Keywords:
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号