首页 | 本学科首页   官方微博 | 高级检索  
     

支持向量机法预测卤代苯和苯酚衍生物的毒性
引用本文:张向东,余成,关宏宇,葛春华. 支持向量机法预测卤代苯和苯酚衍生物的毒性[J]. 山西大学学报(自然科学版), 2007, 30(2): 240-244
作者姓名:张向东  余成  关宏宇  葛春华
作者单位:辽宁大学化学学院,辽宁,沈阳,110036
摘    要:应用支持向量回归算法(SVR),以按非氢原子分类的分子电性距离矢量(H-MEDV)为参数,通过参数的优化,建立了几种更强的预测模型,预测了卤代苯和苯酚衍生物的毒性,并根据H-MEDV参数原理对预测结果进行了初步探讨.各预测模型的标准误差分别为0.305、0.267、0.275、0.228、0.362、0.238,均低于采用多元线性回归(MLR)和逐步回归(SMR)法的预测结果,说明支持向量回归算法在小样本、多变量的样本建模预报问题上具有一定的优势.

关 键 词:支持向量回归  核函数  卤代苯  苯酚
文章编号:0253-2395(2007)02-0240-05
修稿时间:2007-03-302007-04-09

Support Vector Machine Method Applied to Predict the Toxicity of Halogeno Benzene and Phenol Derivatives
ZHANG Xiang-dong,YU Cheng,GUAN Hong-yu,GE Chun-hua. Support Vector Machine Method Applied to Predict the Toxicity of Halogeno Benzene and Phenol Derivatives[J]. Journal of Shanxi University (Natural Science Edit, 2007, 30(2): 240-244
Authors:ZHANG Xiang-dong  YU Cheng  GUAN Hong-yu  GE Chun-hua
Affiliation:College of Chemistry, Liaoning University, S henyang 110036, China
Abstract:Support vector regression algorithm was used to set up some more predictive model through optimizing parameters which is called the hydrogen-association classified molecular electrongativity-distance vector(H-MEDV).The best predicted model was reported for the toxicity of halogeno benzene and phenol derivatives.The root mean suqare error(RMS) of each models were 0.305,0.267,0.275,0.228,0.362,0.238,which were better than that of relective models constructed by multiple linear regression(MLR) and stepwise regression(SMR).The satisfactory results of practical application indicated that the algorithm of SVR were well used to set up predictive model of data mining and multivariable samples.
Keywords:support vector regression    kernel function    halogeno benzene    phenol
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号