首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Early-stage mineralization of hydrothermal tubeworms: New insights into the role of microorganisms in the process of mineralization
基金项目:Supported by the National Natural Science Foundation of China (Grant Nos. 40532011, 40403004 and 40473032) Special thanks go to Prof. Chuanlun Zhang of University of Georgia, USA, and two anonymous reviewers for offering valuable suggestions.
摘    要:As an important part of marine hydrothermal system, hydrothermal vent faunas live in hydrothermal inorganic environment and closely interact with hydrothermal inorganic environment. Sometimes, they can participate in the mineralization process of modern hydrothermal site. Hydrothermal vent faunas, particularly vesUmentiferan and polychaete tubeworms, are occasionally preserved in the geological record. Study on the early mineralization process of hydrothermal vent fauna is significant for understanding the interaction between mineral and organism, and also the formation and preservation mechanism of geological fossil in hydrothermal environment. In this paper, the early stage of mineralization of Vestimentiferan Ridgeia piscesae tubes collected from Juan de Fuca Ridge is studied. The results showed that a lot of filamentous microorganisms were unevenly distributed on the surface of internal wall and in the interspace of the wall of tubeworm. In some cases, microorganisms aggregated as thin layers in or on the wall of tubeworm. The surfaces of microbial cells and the products of microbial degradation may play an important role in the early mineralization of tubeworm. Semitransparent thin layers of organic matter containing sulfur and sulfur granules were commonly found on the wall of tubeworm with lower degree of mineralization. The degradation production of these semitransparent thin layers may accelerate the mineralization of tube wall during the early stage. EDS results showed that on the tube walls some chemical elements such as Fe, P, Ca and Si are selectively enriched from ambient hydrothermal environment. Interestingly, P, Ca and Si covary with Fe content. Because element S originated from the bio-oxidation of H2S by symbiotic microorganism in the tissue of tubeworm, it can be considered as a biomarker when studying the mineralization process of tube wall. Based on the characteristics of tubeworms with different degrees of mineralization, we suggested that the early mineralization stage of tube wall was mai

关 键 词:生物矿化  热水通气口  微生物  无机环境
收稿时间:9 February 2007
修稿时间:2 March 2007

Early-stage mineralization of hydrothermal tubeworms: New insights into the role of microorganisms in the process of mineralization
Authors:Peng XiaoTong  Zhou HuaiYang  Tang Song  Yao HuiQiang  Jiang Lei  Wu ZiJun
Institution:[1]Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China [2]National Key Lab of Marine Geology, Tongji University, Shanghai 200092, China
Abstract:As an important part of marine hydrothermal system, hydrothermal vent faunas live in hydrothermal inorganic environment and closely interact with hydrothermal inorganic environment. Sometimes, they can participate in the mineralization process of modern hydrothermal site. Hydrothermal vent faunas, particularly vestimentiferan and polychaete tubeworms, are occasionally preserved in the geological record. Study on the early mineralization process of hydrothermal vent fauna is significant for under- standing the interaction between mineral and organism, and also the formation and preservation mechanism of geological fossil in hydrothermal environment. In this paper, the early stage of miner- alization of Vestimentiferan Ridgeia piscesae tubes collected from Juan de Fuca Ridge is studied. The results showed that a lot of filamentous microorganisms were unevenly distributed on the surface of internal wall and in the interspace of the wall of tubeworm. In some cases, microorganisms aggregated as thin layers in or on the wall of tubeworm. The surfaces of microbial cells and the products of micro- bial degradation may play an important role in the early mineralization of tubeworm. Semitransparent thin layers of organic matter containing sulfur and sulfur granules were commonly found on the wall of tubeworm with lower degree of mineralization. The degradation production of these semitransparent thin layers may accelerate the mineralization of tube wall during the early stage. EDS results showed that on the tube walls some chemical elements such as Fe, P, Ca and Si are selectively enriched from ambient hydrothermal environment. Interestingly, P, Ca and Si covary with Fe content. Because element S originated from the bio-oxidation of H2S by symbiotic microorganism in the tissue of tubeworm, it can be considered as a biomarker when studying the mineralization process of tube wall. Based on the characteristics of tubeworms with different degrees of mineralization, we suggested that the early mineralization stage of tube wall was mainly controlled by microbial-induced mineralization and the degradation process of tube wall.
Keywords:biomineralization  hydrothermal vent  microorganism  tubeworm  Ridgeia piscesae
本文献已被 维普 SpringerLink 等数据库收录!
点击此处可从《中国科学通报(英文版)》浏览原始摘要信息
点击此处可从《中国科学通报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号