首页 | 本学科首页   官方微博 | 高级检索  
     

厄尔米特矩阵空间上秩可加线性保持及其应用
引用本文:唐孝敏,杨雅琴. 厄尔米特矩阵空间上秩可加线性保持及其应用[J]. 黑龙江大学自然科学学报, 2004, 21(4): 63-67
作者姓名:唐孝敏  杨雅琴
作者单位:黑龙江大学,数学科学学院,黑龙江,哈尔滨,150080;黑龙江大学,数学科学学院,黑龙江,哈尔滨,150080
基金项目:Supported by NSF of Heilongjiang Province (A01-07),the Fund of Heilongjiang Education Committee forOverseas Scholars ( 1054HQ004)
摘    要:以Hn记n×n复厄尔米特矩阵集合.刻划了Hn上秩可加线性保持.Hn对于运算加法(A,B)→A+B,乘法(A,B)→A·B=ABA和纯量乘法(c,A)→cA,其中A,B∈Hn及c∈R(实数域),形成一个非结合代数.给出了这个非结合代数的自同构.

关 键 词:线性保持问题  自同构  厄尔米特矩阵  

Linear preservers of rank-additivity on the spaces of Hermitian matrices and their applications
TANG Xiao-min,YANG Ya-qin. Linear preservers of rank-additivity on the spaces of Hermitian matrices and their applications[J]. Journal of Natural Science of Heilongjiang University, 2004, 21(4): 63-67
Authors:TANG Xiao-min  YANG Ya-qin
Abstract:Denote the set of n × n complex Hermitian matrices by Hn. The bijective linear preservers of rank-additivity on Hn are characterized. The set Hn forms a non-associative algebra with respect to the addition (A, B) → A + B, the multiplication (A, B) → A. B = ABA and the scalar multiplication (c, A) → cA where A, B ∈ Hn and c ∈ R(the real number field). The forms of any automorphism of the non-associative algebra are also given.
Keywords:linear preserver  automorphism  Hermitian matrix  rank
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号