摘 要: | 针对现有大部分车辆检测与跟踪数据集通常存在的采集场景单一、数据集长尾分布以及图像采集环境简单等问题,本文构建一个车辆数据集VeDT-MSS,用于城市以及乡村监控场景下4种车辆类别(小汽车、卡车、公交车和摩托车)的检测以及跟踪研究。该数据集具有交通场景多样化、卡车的类内多样性大、摩托车标注实例占比高以及背景复杂程度高4个显著特性。为了验证该数据集的有效性,在目标检测以及多目标跟踪任务上进行了大量的基线实验。实验结果表明,VeDT-MSS数据集在评估现有算法的鲁棒性和泛化性方面具有实用性。该数据集的提出对促进车辆检测与跟踪研究具有相当的潜力,并为计算机视觉社区评估算法性能提供一个新的数据选择。
|