首页 | 本学科首页   官方微博 | 高级检索  
     

基于多任务多模态学习的谣言检测框架
作者姓名:蒋方婷  梁刚
作者单位:四川大学网络空间安全学院
基金项目:自然科学基金联合项目(62162057);;四川省社会科学重点研究基地——系统科学与企业发展研究中心规划项目;
摘    要:谣言检测是对社交网络上传播的信息内容进行真实性鉴别的任务.一些研究表明融合多模态信息有助于谣言检测,而现有多模谣言检测方法具有以下问题:(1)只是将处于不同表示空间的单模态特征简单拼接形成多模态表示,没有考虑多模态之间的关系,难以提高模型的预测性能和泛化能力.(2)缺乏对社交网络数据组成结构的细致考虑,只能处理由文本-图像对的社交网络数据,无法处理由多幅图像组成的数据,且当其中一种模态(图像或文本)缺失时模型无法进行预测.针对上述问题,本文提出了一种多任务多模态谣言检测框架(MMRDF),该框架由3个子网络组成:文本子网络、视觉子网络和融合子网络,通过从单模态数据中提取浅层至深层的单模特征表示,在不同的子空间中产生特征图,丰富模态内特征,并通过复合卷积结构融合生成联合多模态表示,以获得更好的预测性能.同时该框架可以灵活地处理所有类型的推文(纯文本、纯图像、文本-图像对和多图像文本),并且没有引入造成额外时间延迟的传播结构、响应内容等数据作为输入,可以在推文发布后立即应用于谣言检测,减少辟谣的时间延迟.在两个真实数据集上的实验结果表明,所提框架明显优于目前最先进的方法,准确率上的提升分别...

关 键 词:谣言检测  多模态分析  表示学习  多任务学习  神经网络
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号