首页 | 本学科首页   官方微博 | 高级检索  
     

基于MSAM-YOLOv5的内河航道船舶识别方法
作者姓名:萧筝  王继业  夏叶亮
作者单位:1. 武汉理工大学机电工程学院;2. 武汉船用电力推进装置研究所
基金项目:国家自然科学基金资助项目(51905397);
摘    要:针对内河航道上无人船识别目标时受背景复杂性和分布多样性影响而存在漏检的问题,提出一种基于YOLOv5(you only look once)的算法.首先,提出一种注意力模块MSAM(多尺度注意力模块),可对带有大量空间信息的浅层特征图和带有丰富语义信息的深层特征图进行注意力融合,使得融合后的特征图具有更强的特征;然后,研究MSAM模块的不同位置的影响;最后,优化锚框参数,使得锚框形状更加符合内河船舶的形状.在船舶数据集上进行实验,结果表明:本算法的召回率提高了1.12%,三个mAP(平均精度均值)指标分别提高了0.87%,5.00%和2.07%,FPS(帧率)指标提高了3,漏检率降低,整体检测准确性和检测速度均得到提升.

关 键 词:船舶检测  内河航道  多尺度注意力模块  YOLOv5  注意力模块位置
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号