摘 要: | 启发于脉冲耦合网络(PCN)在视觉特征表示方面的优势,提出使用引力搜索算法(GSA)优化脉冲耦合网络(PCN)来提取图像的视觉特征,对PCN的参数使用优化机制来提高所获取的特征质量,由此来提高基于内容的图像检索(CBIR)的分类和检索结果.首先对学习的图像用PCN生成特征码;然后计算特征码间的距离,距离变量作为适应度函数的输入;最后利用引力搜索算法优化PCN的几个变量,进行参数更新.在Caltech256和Corel数据库上的实验结果表明提出方法的有效性,相比于改进的相关反馈方法(IRF)、颜色边缘结合离散小波变换方法(CE-DWT)和色矩结合局部二进制模式方法(CM-LBP),提出的方法检索精确度至少提高了5%,查全率提高4%左右.
|