首页 | 本学科首页   官方微博 | 高级检索  
     

引力搜索算法优化脉冲耦合网络的图像检索方法
作者姓名:雷虎  樊泽明
摘    要:启发于脉冲耦合网络(PCN)在视觉特征表示方面的优势,提出使用引力搜索算法(GSA)优化脉冲耦合网络(PCN)来提取图像的视觉特征,对PCN的参数使用优化机制来提高所获取的特征质量,由此来提高基于内容的图像检索(CBIR)的分类和检索结果.首先对学习的图像用PCN生成特征码;然后计算特征码间的距离,距离变量作为适应度函数的输入;最后利用引力搜索算法优化PCN的几个变量,进行参数更新.在Caltech256和Corel数据库上的实验结果表明提出方法的有效性,相比于改进的相关反馈方法(IRF)、颜色边缘结合离散小波变换方法(CE-DWT)和色矩结合局部二进制模式方法(CM-LBP),提出的方法检索精确度至少提高了5%,查全率提高4%左右.

关 键 词:脉冲耦合网络;引力搜索算法;基于内容的图像检索;适应度函数;特征码
本文献已被 CNKI 等数据库收录!
点击此处可从《湘潭大学自然科学学报》浏览原始摘要信息
点击此处可从《湘潭大学自然科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号