首页 | 本学科首页   官方微博 | 高级检索  
     

Melnikov函数在含有两个幂零尖点的双异宿环附近的展开式
引用本文:苗稼乐,杨俊敏. Melnikov函数在含有两个幂零尖点的双异宿环附近的展开式[J]. 上海师范大学学报(自然科学版), 2020, 49(3): 295-310
作者姓名:苗稼乐  杨俊敏
作者单位:河北师范大学数学科学学院,河北石家庄050024;河北师范大学数学科学学院,河北石家庄050024
基金项目:The Natural Science Foundation of China (11971145); The Natural Science Foundation of Hebei Province(A2019205133)
摘    要:考虑未扰Liénard系统=y=-gx),其中deg gx)=7,当该系统分别含有2,3,4和5个奇点时,给出了其所有的不同拓扑类型的相图,并给出了Melnikov函数在含有2个幂零尖点和1个双曲鞍点的双异宿环附近的展开式和得到极限环的条件.

关 键 词:极限环  Liénard系统  近哈密顿系统  异宿环  Melnikov函数
收稿时间:2020-03-10

On the expansion of the Melnikov function near a double heteroclinic loop with two nilpotent cusps
MIAO Jiale and YANG Junmin. On the expansion of the Melnikov function near a double heteroclinic loop with two nilpotent cusps[J]. Journal of Shanghai Normal University(Natural Sciences), 2020, 49(3): 295-310
Authors:MIAO Jiale and YANG Junmin
Affiliation:School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China and School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
Abstract:In this paper, we give all the different topological types of phase portrait for the unperturbed Liénard system =y, =-g(x) in the case that deg g(x)=7 and the system has 2, 3, 4 and 5 singular points, respectively. We then give the expansion of Melnikov function near a double heteroclinic loop with two nilpotent cusps and one hyperbolic saddle. We also give the conditions to obtain the limit cycles.
Keywords:limit cycle  Liénard system  near-Hamiltonian system  heteroclinic loop  Melnikov function
本文献已被 万方数据 等数据库收录!
点击此处可从《上海师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《上海师范大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号