首页 | 本学科首页   官方微博 | 高级检索  
     

求解一类非对称线性方程组的极小化残量法
引用本文:陈金如. 求解一类非对称线性方程组的极小化残量法[J]. 南京师大学报(自然科学版), 1990, 13(4): 15-19,26
作者姓名:陈金如
作者单位:南京师大数学系
摘    要:本文考虑系数阵的特征值正负成对出现的非对称线性方程组,对这类线性方程组,本文提出了一种基于特殊子空间的极小化残量法,它在理论上具有至多N/2步的收敛性(N为方程组的阶数),文中的数值试验验证了所得结论。

关 键 词:线性方程组 特征值 极小化残量法

A MINIMAL RESIDUAL METHOD FOR SOLVING A CLASS OF UNSYMMETRIC SYSTEMS OF LINEAR EQUATIONS
Chen Jinru. A MINIMAL RESIDUAL METHOD FOR SOLVING A CLASS OF UNSYMMETRIC SYSTEMS OF LINEAR EQUATIONS[J]. Journal of Nanjing Normal University(Natural Science Edition), 1990, 13(4): 15-19,26
Authors:Chen Jinru
Affiliation:Department of Mathematics
Abstract:This paper considers a class of unsymmetric systems of linear equations, whose coefficient matrix's eigenvalues is symmetric about the origin. For solving this class of linear systems, a minimal residual method has been proposed based upon a special subspace. Theoretically, it gives thc exact solution in at most N/2 steps (N denotes the order of the systems). Several numerical experiments test our results.
Keywords:Unsymmetric   Systems of lincar equations   Eigenvalue Minimal residual method.
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号