首页 | 本学科首页   官方微博 | 高级检索  
     

基于TCNN-BiLSTM网络的调制识别算法
作者姓名:刘凯  张斌  黄青华
作者单位:上海大学通信与信息工程学院, 上海 200444
基金项目:国家自然科学基金(61571279)
摘    要:针对传统调制识别算法在低信噪比下识别率不高的情况,提出双路卷积神经网络级联双向长短时记忆(two-way convolutional neural network cascaded bidirectional long short-term memory, TCNN-BiLSTM)网络的调制识别算法。首先,该算法并联不同尺度卷积核的卷积层,提取调制信号不同维度的特征。然后,级联BiLSTM层,对多维特征构建LSTM时间模型。最后,使用softmax分类器完成识别。仿真实验表明,所提算法结构在加性高斯白噪声和特定信道参数的瑞利衰落信道下,性能要优于基于传统特征和其他网络结构的识别算法。在特定信道参数的瑞利衰落信道下信噪比低至6 dB时,该算法对6种数字调制信号的识别率仍可达到92%以上。

关 键 词:调制识别  并联网络  卷积神经网络  双向长短时记忆网络  
收稿时间:2019-12-17
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号