首页 | 本学科首页   官方微博 | 高级检索  
     


Stress-strain partitioning analysis of constituent phases in dual phase steel based on the modified law of mixture
Authors:Shuang Kuang  Yong-lin Kang  Ren-dong Liu
Affiliation:a School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
b Technology Center, Anshan Iron & Steel Group Corporation, Anshan 114001, China
Abstract:A more accurate estimation of stress-strain relationships for martensite and ferrite was developed, and the modified law of mixture was used to investigate the stress-strain partitioning of constituent phases in dual phase (DP) steels with two different martensite volume fractions. The results show that there exist great differences in the stress-strain contribution of martensite and ferrite to DP steel. The stress-strain partitioning coefficient is not constant in the whole strain range, but decreases with increasing the true strain of DP steel. The softening effect caused by the dilution of carbon concentration in martensite with the increase of martensite volume fraction has great influence on the strain contribution of martensite. The strain ratio of ferrite to martensite almost linearly increases with increasing the true strain of DP steel when the martensite volume fraction is 22%, because martensite always keeps elastic. But the strain ratio of ferrite to martensite varies indistinctively with the further increase in true strain of DP steel above 0.034 when the martensite volume fraction is 50%, because plastic deformation happens in martensite. The stress ratio of martensite to ferrite decreases monotonously with increasing the true strain of DP steel whether the martensite volume fraction is 22% or 50%.
Keywords:stress and strain partitioning   dual phase steel   ferrite   martensite
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《矿物冶金与材料学报》浏览原始摘要信息
点击此处可从《矿物冶金与材料学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号