首页 | 本学科首页   官方微博 | 高级检索  
     

融合BiLSTM的双图神经网络文本分类模型
引用本文:宋婷婷,吴赛君,裴颂文. 融合BiLSTM的双图神经网络文本分类模型[J]. 上海理工大学学报, 2023, 45(2): 103-111,119
作者姓名:宋婷婷  吴赛君  裴颂文
作者单位:上海理工大学 光电信息与计算机工程学院, 上海 200093;上海理工大学 光电信息与计算机工程学院, 上海 200093;中国科学院 计算技术研究所 计算机体系结构国家重点实验室, 北京 100190;软硬件协同设计技术与应用教育部工程研究中心(华东师范大学), 上海 200062
基金项目:国家自然科学基金资助项目(61975124);上海市自然科学基金资助项目(20ZR1438500);计算机体系结构国家重点实验室开放课题(CARCHA202111);软硬件协同设计技术与应用教育部工程研究中心开放课题(OP202202)
摘    要:采用图神经网络模型为整个语料库构建异构图处理文本分类任务时,存在难以泛化到新样本和词序信息缺失的问题。针对上述问题,提出了一种融合双图特征和上下文语义信息的文本分类模型。首先,为每个文本独立构建共现图和句法依存图,从而实现对新样本的归纳式学习,从双图角度捕获文本特征,解决忽略单词间依存关系的问题;其次,利用双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)编码文本,解决忽略词序特征和难以捕捉上下文语义信息的问题;最后,融合双图特征,增强图神经网络模型的分类性能。在MR,Ohsumed,R8,R52数据集上的实验结果表明,相较于经典的文本分类模型,该模型能够提取更丰富的文本特征,在准确率上平均提高了2.17%,5.38%,0.61%,2.48%。

关 键 词:文本分类  图神经网络  双向长短期记忆网络  句法依存图  共现图
收稿时间:2023-02-08

Dual graph neural networks with BiLSTM for text classification
SONG Tingting,WU Saijun,PEI Songwen. Dual graph neural networks with BiLSTM for text classification[J]. Journal of University of Shanghai For Science and Technology, 2023, 45(2): 103-111,119
Authors:SONG Tingting  WU Saijun  PEI Songwen
Affiliation:School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;Engineering Research Center of Software/Hardware Co-design Technology and Application, Ministry of Education (East China Normal University), Shanghai 200062, China
Abstract:When a heterogeneous graph was constructed for graph neural network model for the whole corpus to text classification, it was difficult to generalize to new samples and word order information was missed. To solve these problems, a text classification that incorporated dual graph features and contextual semantic information was proposed. Firstly, a syntactic dependency graph and a co-occurrence graph were constructed for individual text to inductive learning for new samples. Text features were captured from two perspectives, which solved the problem of ignoring dependency information between words. Secondly, bi-directional long short-term memory network (BiLSTM) was used to encode text, which solved the problem of ignoring word order features and having difficulty in capturing contextual semantic information. Finally, dual graph features were fused to enhance the classification performance of graph neural network model. The experimental results on MR, Ohsumed, R8 and R52 datasets show that the model can extract richer text features and have an average increase of 2.17%, 5.38%, 0.61% and 2.48% in accuracy compared with classical text classification models.
Keywords:text classification  graph neural networks  bi-directional long short-term memory network  syntactic dependency graph  co-occurrence graph
点击此处可从《上海理工大学学报》浏览原始摘要信息
点击此处可从《上海理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号