摘 要: | 设p(t),q(t)∈C((0,1),(0,+∞)),f(x),g(y)∈((0,+∞),(0,+∞)),并且满足下列条件(1)f(x)是x的减函数,存在正数b>0,使得f(rx)≤r-bf(x),对任意(r,x)∈(0,1)×(0,+∞),limx→0+xbf(x)>0;(2)g(y)是y的减函数,limy→0+g(y)=+∞.则下列奇异边值问题x″+p(t)f(x)+q(t)g(x′)=0,0<t<1,x(0)=x′(1)=0.有唯一C1[0,1]正解的充分必要条件是t-bp(t)∈L1[0,1],q(t)∈L1[0,1].
|