首页 | 本学科首页   官方微博 | 高级检索  
     

基于随机矩阵的高光谱影像非负稀疏表达分类
引用本文:孙伟伟,刘春,施蓓琦,李巍岳. 基于随机矩阵的高光谱影像非负稀疏表达分类[J]. 同济大学学报(自然科学版), 2013, 41(8): 1274-1280
作者姓名:孙伟伟  刘春  施蓓琦  李巍岳
作者单位:1. 同济大学测绘与地理信息学院,上海,200092
2. 同济大学测绘与地理信息学院,上海200092;现代工程测量国家测绘地理信息局重点实验室,上海200092
基金项目:国家"九七三"重点基础研究发展计划,教育部留学回国人员科研启动基金
摘    要:考虑到常规的高光谱影像稀疏表达分类模型的不足,提出随机矩阵-非负稀疏表达分类模型来提高高光谱影像的分类精度.通过引入随机矩阵来改善传统稀疏表达分类模型中测量矩阵以更好满足限制等距特性条件,同时限定系数向量的非负性以提高重构系数的可解释性.基于两个不同的高光谱数据集,对随机矩阵-非负稀疏表达分类模型采用三种方法进行系数重构,并对比常规稀疏表达分类模型的分类结果.实验证明,所提的模型能够明显提高常规稀疏表达分类模型的分类结果.同时,随机矩阵的投影维数对分类精度的影响研究实验表明,较大的投影维数能够保证该模型用以提高高光谱影像的分类精度.

关 键 词:高光谱影像分类  非负稀疏表达  随机矩阵  压缩感知
收稿时间:2012-06-15
修稿时间:2013-04-17

Random Matrix Based Nonnegative Sparse Representation for Hyperspectral Image Classification
Sun weiwei,Liu chun,SHIBEIQI and Liweiyue. Random Matrix Based Nonnegative Sparse Representation for Hyperspectral Image Classification[J]. Journal of Tongji University(Natural Science), 2013, 41(8): 1274-1280
Authors:Sun weiwei  Liu chun  SHIBEIQI  Liweiyue
Affiliation:College of Surveying and Geo informatics, Tongji University, Shanghai 200092, China;College of Surveying and Geo informatics, Tongji University, Shanghai 200092, China; Key Laboratory of Advanced Engineering Survey of National Administration of Surveying, Mapping and Geoinformation, Shanghai 200092, China;College of Surveying and Geo informatics, Tongji University, Shanghai 200092, China;College of Surveying and Geo informatics, Tongji University, Shanghai 200092, China
Abstract:With a consideration of the limitations of regular classification model using sparse representation (SR), an innovative model named Random Matrix Nonnegative Sparse Representation (RM NSR) is proposed to improve the classification results of hyperspectral imagery. The RM NSR model introduces a random matrix inspired by random projection to improve the restricted isometry property (RIP) condition of measurement matrix in the regular SR model. The new model also considers the non negativity of reconstructed sparse coefficient vectors. Based on Urban and PaviaU hyperspectral datasets, three different schemes in the RM NSR model are utilized to recover the sparse coefficient and the classification results are compared with those of the regular SR model. Experimental results show that the RM NSR model obviously outperforms the regular SR model in the average classification accuracies (ACAs). Furthermore, the relationship between the projected dimension of random matrix and the ACAs shows that a greater projected dimension guarantees the improvement of ACAs by the RM NSR model.
Keywords:hyperspectral image classification   nonnegative sparse representation   random matrix   compressive sensing
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《同济大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《同济大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号