首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习和约束稀疏表达的人脸识别算法
引用本文:张继威,牛少彰,曹志义,王心怡. 基于深度学习和约束稀疏表达的人脸识别算法[J]. 北京理工大学学报, 2019, 39(3): 255-261. DOI: 10.15918/j.tbit1001-0645.2019.03.006
作者姓名:张继威  牛少彰  曹志义  王心怡
作者单位:北京邮电大学智能通信软件与多媒体北京市重点实验室,北京,100876;北京邮电大学智能通信软件与多媒体北京市重点实验室,北京,100876;北京邮电大学智能通信软件与多媒体北京市重点实验室,北京,100876;北京邮电大学智能通信软件与多媒体北京市重点实验室,北京,100876
基金项目:国家自然科学基金资助项目(U1536121,61370195)
摘    要:目前的人脸特征匹配算法大多关注于单图像与单图像的匹配而不能有效利用图像序列之间的相关信息,因而提出了一种基于深度学习与约束稀疏表达的人脸特征匹配算法.通过CNN网络对人脸图像进行特征提取,并利用改进的稀疏表达方法自动选取相似的图像序列进行特征匹配,有效地利用了图像序列之间的相关信息.实验结果表明,该算法在LFW和AR数据库上取得了很好的效果并优于传统的SRC,L1-norm和CRC-RLS算法. 

关 键 词:人脸识别  约束稀疏表达  深度学习  图像序列
收稿时间:2016-11-23

Face Recognition via Deep Learning and Constraint Sparse Representation
ZHANG Ji-wei,NIU Shao-zhang,CAO Zhi-yi and WANG Xin-yi. Face Recognition via Deep Learning and Constraint Sparse Representation[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2019, 39(3): 255-261. DOI: 10.15918/j.tbit1001-0645.2019.03.006
Authors:ZHANG Ji-wei  NIU Shao-zhang  CAO Zhi-yi  WANG Xin-yi
Affiliation:Beijing Key Lab of Intelligent Telecommunication Software and Multimedia, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract:The matching between single image and single image has attracted much attention in the current face feature matching algorithms,in order to make use of the correlation information between image sequences effectively,a face feature matching algorithm based on deep learning and constraint sparse representation was proposed.The feature extraction of face images was carried out through CNN network,and an improved sparse expression method was used to automatically select similar image sequences for feature matching,so that the correlation information between image sequences could be effectively utilized.Experimental results show that the proposed algorithm can achieve better result in LFW and AR databases,and is superior to other face feature matching methods,such as SRC,L1-norm and CRC-RLS.
Keywords:face recognition  constraint sparse representation  deep learning  image sequence
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号