首页 | 本学科首页   官方微博 | 高级检索  
     

融合全局和局部特征的图像特征提取方法
引用本文:张雅清1,刘忠宝2. 融合全局和局部特征的图像特征提取方法[J]. 华侨大学学报(自然科学版), 2015, 0(4): 406-411. DOI: 10.11830/ISSN.1000-5013.2015.04.0406
作者姓名:张雅清1  刘忠宝2
作者单位:1. 太原学院 数学系, 山西 太原 030012; 2. 中北大学 计算机与控制工程学院, 山西 太原 030051
摘    要:针对图像特征提取无法同时利用样本的全局和局部特征的问题,提出融合全局和局部特征的特征提取方法.该方法充分利用线性判别分析和保局投影算法分别在特征提取中保持样本全局特征和局部特征方面的优势,进一步提高图像特征提取效率.首先,引入全局散度矩阵和局部散度矩阵分别表征样本的全局特征和局部特征.然后,基于同类样本尽可能紧密,异类样本尽可能远离的思想,构造最优化问题.比较实验表明:与传统的主成分分析、线性判别分析、保局投影算法相比,文中方法的工作效率有一定提高.

关 键 词:特征提取  线性判别分析  保局投影算法  全局特征  局部特征

Research on Image Feature Exaction Method by Combining Global and Local Features
ZHANG Ya-qing1,LIU Zhong-bao2. Research on Image Feature Exaction Method by Combining Global and Local Features[J]. Journal of Huaqiao University(Natural Science), 2015, 0(4): 406-411. DOI: 10.11830/ISSN.1000-5013.2015.04.0406
Authors:ZHANG Ya-qing1  LIU Zhong-bao2
Affiliation:1. School of Mathematics, Taiyuan University, Taiyuan 030012, China; 2. School of Computer and Control Engineering, North University of China, Taiyuan 030051, China
Abstract:With the development of application, the main problem of image feature extraction is almost no study taking both global and local features into consideration. In view of this, feature exaction approach by combining global and local characteristics(FEM-GLC)is proposed in this paper. The advantages of linear discriminant analysis(LDA)in extracting the global feature and locally preserving projections(LPP)in preserving the local feature are taken into consideration in FEM-GLC which tries to improve the efficiencies of feature extraction. In FEM-GLC, the global divergence matrix and the local divergence matrix are introduced which respectively represents the global feature and local feature. The optimization problem of FEM-GLC is constructed based on the close relation between samples of the same class and far away between different classes. The comparative experiments with PCA, LDA and LPP on the ORL dataset and Yale dataset verify the effectiveness of FEM-GLC.
Keywords:feature exaction  linear discriminant analysis  locally preserving projections  global feature  local feature
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《华侨大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华侨大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号