首页 | 本学科首页   官方微博 | 高级检索  
     

von Neumann代数下Markov对偶过程的若干性质
引用本文:张一进,李扬荣. von Neumann代数下Markov对偶过程的若干性质[J]. 重庆师范学院学报, 2014, 0(3): 58-60
作者姓名:张一进  李扬荣
作者单位:[1]重庆邮电大学数理学院,重庆400065 [2]西南大学数学与统计学院,重庆400715
基金项目:资助项目:国家自然科学基金(No.11201512);重庆邮电大学自然科学基金(No.A2011-19)
摘    要:本文引入Markov算子半群的理论,利用分析和代数的方法研究了Markov对偶过程的Q矩阵和最小Q函数的若干性质。主要结论有:对偶分支Q-矩阵是忠实的、次随机单调的及正则的、零流出的、对偶的;对偶分支矩阵的最小Q函数F(t)是唯一且忠实的,非随机单调的及对偶的;M是vonNeumann代数,M*sa是M的前对偶M+的自伴,T是Mn上的Markov积分半群,g∈M,+,η∈R,使得limsupdist(At(T)f,[-g,g])〈η,那么M上的正则线性形式的锥体Mn+在M*sa中是强规则的。

关 键 词:对偶分支Q-矩阵  最小Q函数  对偶  渐近行为

Some Properties of Markov Dual Branching Process with von Neumann Algebras
ZHANG Yi-jin,LI Yang-rong. Some Properties of Markov Dual Branching Process with von Neumann Algebras[J]. Journal of Chongqing Normal University(Natural Science Edition), 2014, 0(3): 58-60
Authors:ZHANG Yi-jin  LI Yang-rong
Affiliation:1. School of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065; 2 School of Mathematics and Statistics, Southwest University, Chongqing 400715, China)
Abstract:In this paper, with introduction of the theory of operator semigroup, some properties of Q-Matrix and minimal Q-func- tion of Markov dual branching process are studied by the method of analysis and algebras. Some important results are obtained, such as Dual Branching Q-Matrix is honest, substochastic monotone, regular, zero-exit and dual; minimal Q-function of Markov dual branching matrix is unique and honest, not stochastic monotone, dual; M is von Neumann algebra, Mn is predual M. of M, T is a Markov integrated semigroup on M. , g ∈ M. + , η∈ R, such that lim sup dist(A, (T)f, [-g, g3)〈η, then the cone M. + of positive normal linear forms on M is strongly normal in M*sa.
Keywords:dual branching Q-Matrix  minimal Q-function  dual  Feller  asymptotic behavior
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号