首页 | 本学科首页   官方微博 | 高级检索  
     

基于贝叶斯网络的钻井作业现场风险评估
引用本文:王兵,杨小莹,赵春兰,肖斌. 基于贝叶斯网络的钻井作业现场风险评估[J]. 西南石油大学学报(自然科学版), 2015, 37(2): 131-137. DOI: 10.11885/j.issn.1674-5086.2014.09.01.02
作者姓名:王兵  杨小莹  赵春兰  肖斌
作者单位:1. 西南石油大学计算机科学学院,四川成都610500;2. 西南石油大学石油与天然气工程学院,四川成都610500;3. 西南石油大学理学院,四川成都610500
基金项目:国家重大科技专项((2011ZX05021–006);四川省教育厅科技重点项目(13ZA0192)
摘    要:针对高投入、高风险和不确定性的钻井作业现场,展开了安全评价研究。提出了一种基于贝叶斯网络定量评
价钻井作业现场风险、寻找风险源的方法。通过分析历史数据与借助专家经验识别不安全因素,将影响钻井作业现场
安全性的32 个因素分为“人的不安全行为”和“物的不安全状态”,同时构建了钻井作业现场安全性的贝叶斯网络拓
扑结构,并进行了概率推理向前预测和向后诊断,定量评估了钻井作业现场安全性,找出了影响最突出的不安全因素。
将其应用于龙岗气田L 井钻井作业现场,得出人为的不安全行为和物的不安全状态概率分别为0.108 和0.165,整个L
井作业现场不安全概率为0.137,并诊断出过程监控缺陷、安全防护设施缺失、作业导致隐患、井控设备缺陷、生产管
理缺陷不安全因素最突出,与现场实际情况一致。该评价方法为现场安全作业提供较为准确的诊断依据。

关 键 词:钻井作业现场  安全性评价  贝叶斯网络  向前预测  向后诊断  

Drilling Site Risk Assessment Based on Bayesian Network
Wang Bing;Yang Xiaoying;Zhao Chunlan;Xiao Bin. Drilling Site Risk Assessment Based on Bayesian Network[J]. Journal of Southwest Petroleum University(Seience & Technology Edition), 2015, 37(2): 131-137. DOI: 10.11885/j.issn.1674-5086.2014.09.01.02
Authors:Wang Bing  Yang Xiaoying  Zhao Chunlan  Xiao Bin
Affiliation:1. School of Computer Science,Southwest Petroleum University,Chengdu,Sichuan,610500,China;2. School of Petroleum and Natural Gas Engineering,Southwest Petroleum University,Chengdu,Sichuan 610500,China;3. School of Science,Southwest Petroleum University,Chengdu,Sichuan 610500,China
Abstract:In view of the high investment and risk and uncertainties in drilling operation,the safety evaluation about the
drilling operation is carried out in the paper. The method of evaluating risk and seeking risk resource during drilling operation
has been developed by using Bayes network. The 32 risk factors during the drilling operation could be classified into manmade
risk factors and natural risk factors by analyzing the history data and identifying the dangerous factors with the help of
expertise. The Bayes network topological structure and conditional probability table(CPT)was developed for drilling operation
risk;the probability was predicted forward and diagnosed backward;the safety probability of drilling operation was evaluated
quantitative and the most dangerous factor was found out. After applying the Bayes network model to Well L gas drilling
operation,we got the risk probability of man-made risk and natural risk at 0.108 and 0.165,respectively,the risk probability
of Well L gas drilling operation at 0.137. The many dangerous factors are defects in monitor during the drilling process,lack of
security protection facilities,hidden trouble induced by drilling operation,defect in well-control equipment and management
in production. This will provide precise diagnostic data for operators and decision-making for safe production.
Keywords:drilling operation  safety assessment  Bayes network model  prediction forward  diagnosis backward  
本文献已被 CNKI 等数据库收录!
点击此处可从《西南石油大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《西南石油大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号