首页 | 本学科首页   官方微博 | 高级检索  
     

毫米波雷达数据驱动的桥梁挠度预测
作者姓名:顾思思  常世新  韩明敏  赵建东
作者单位:中交公路规划设计院有限公司;北京交通大学交通运输学院;河北省交通规划设计研究院有限公司
基金项目:国家自然科学基金(71871011);江西祁婺高速智慧交通设计专题(K21008AK)。
摘    要:为监测公路桥梁健康状况从而保证车辆行驶桥面的安全性,基于毫米波雷达监测的桥梁挠度数据,结合深度学习理论,提出了一种基于卷积神经网络(convolutional neural network, CNN)与门控制循环单元(gate recurrent unit, GRU)组合的桥梁挠度预测模型。首先,获取高速公路大桥高精度挠度数据,通过数据预处理,在保留原始数据特征的基础上,修复部分噪声数据;其次,将处理后的样本数据、时间步长和特征数的三维数据,以桥梁挠度数据序列构造的输入矩阵作为输入层,经过CNN-GRU组合模型的密集连接层后,输出预测桥梁挠度值。最后,选取具有代表性的监测点数据,利用均方根误差 (root mean square error, RMSE)、平均绝对误差 (mean absolute error, MAE)、平均百分比误差 (mean absolute percentage error, MAPE)进行预测效果验证。结果表明,CNN-GRU模型的精度更高:较于传统LSTM(long short-term memory)模型在RMSE上提升了59.65%,MAE提升了61.30%;较于CNN-LSTM模型在RMSE上提升了2.48%,MAE提升了4.87%。其对于桥梁挠度极值及趋势的判断基本准确,可以作为桥梁健康状况预测的科学依据。

关 键 词:毫米波雷达  桥梁挠度  预测  组合模型  时间序列模型
收稿时间:2023-02-05
修稿时间:2023-03-17
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号