首页 | 本学科首页   官方微博 | 高级检索  
     

基于循环谱截面智能分析的混合信号调制识别方法
引用本文:杜宇,杨新权,张建华,袁素春,肖化超,袁晶晶. 基于循环谱截面智能分析的混合信号调制识别方法[J]. 系统仿真学报, 2023, 35(1): 146-157. DOI: 10.16182/j.issn1004731x.joss.22-0239
作者姓名:杜宇  杨新权  张建华  袁素春  肖化超  袁晶晶
作者单位:中国空间技术研究院 西安分院,陕西 西安 710100
基金项目:军委科技委基础加强计划重点基础研究(2020-JCJQ-ZD-071);国防科工局稳定支持基金(HTKJ2021KL504011)
摘    要:针对已有混合信号识别方法存在智能化程度低、适应性差等问题,提出了一种基于循环谱截面和深度学习相结合的智能识别方法。理论推导分析了常见混合通信信号的循环谱零谱频率截面特征;利用提出的非线性分段映射和指向性伪聚类新方法对上述截面图进行预处理特征增强,提高了截面特征的适应性和一致性;并将预处理后的特征图与经典残差网络相结合,利用深度学习网络对特征图中调制信息的深层次细节挖掘分析能力,实现了混合信号的有效识别。仿真结果表明,该方法对噪声不敏感,当信噪比不低于-2 dB时,平均识别率大于90%;且该方法对信号参数及信号间能量比变化有较好的适应能力。

关 键 词:通信信号处理  深度学习  调制识别  循环谱  残差网络
收稿时间:2022-03-19

Modulation Recognition Method of Mixed Signal Based on Intelligent Analysis of Cyclic Spectrum Section
Yu Du,Xinquan Yang,Jianhua Zhang,Suchun Yuan,Huachao Xiao,Jingjing Yuan. Modulation Recognition Method of Mixed Signal Based on Intelligent Analysis of Cyclic Spectrum Section[J]. Journal of System Simulation, 2023, 35(1): 146-157. DOI: 10.16182/j.issn1004731x.joss.22-0239
Authors:Yu Du  Xinquan Yang  Jianhua Zhang  Suchun Yuan  Huachao Xiao  Jingjing Yuan
Affiliation:China Academy of Space Technology (Xi'an), Xi'an 710100, China
Abstract:Aiming at the problems of low intelligence and poor adaptability for the existing mixed signal recognition methods, an intelligent recognition method based on cyclic spectral cross section and deep learning is proposed. For common mixed communication signals, the characteristics of zero frequency cross section of cyclic spectrum are theoretically deduced and analyzed. Two new pre-processing methods, nonlinear segmental mapping and directional pseudo-clustering are proposed, which can effectively improve the adaptability and consistency of cross section features. The pre-processed feature graph is combined with the residual network (ResNet), and the deep learning network is used to mine and analyze the deep details of modulation information in the feature graph, and the effective recognition of mixed signals is realized. Simulation results show that the method is insensitive to noise, and the average recognition rate is more than 90% when the SNR is no less than -2dB. The proposed method has good adaptability to the variation of signal parameters and energy ratio between signals.
Keywords:communication signal processing  deep learning  modulation recognition  cyclic spectrum  residual network  
点击此处可从《系统仿真学报》浏览原始摘要信息
点击此处可从《系统仿真学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号