首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法的模糊c-均值聚类算法
引用本文:欧阳,成卫,韩逢庆. 基于遗传算法的模糊c-均值聚类算法[J]. 重庆大学学报(自然科学版), 2004, 27(6): 89-92
作者姓名:欧阳  成卫  韩逢庆
作者单位:重庆工学院,重庆,400050;重庆工学院,重庆,400050;重庆工学院,重庆,400050
摘    要:基于误差平方和准则的模糊c-均值算法(FCM)是一种典型的动态聚类算法,其求解结果通常是局部最优解;当模糊集合之间的并、交、包含运算采用传统定义时,在模糊c-均值聚类结果中还会存在无意义的聚类集.研究表明采用遗传算法进行模糊c-均值聚类(Fuzzy c-means algorithm over genetic algorithm,GFCM)时,不仅能够消除无意义的聚类集,而且还在一定程度上避免模糊c-均值算法收敛到局部最优解,为此设计编码、选择、配对交叉、变异等步骤.测试数据实验表明采用GFCM算法的结果优于FCM算法.

关 键 词:遗传算法  模糊c-均值聚类  GFCM
文章编号:1000-582X(2004)06-0089-04
修稿时间:2004-01-08

Fuzzy c-means Cluster Over Gentic Algorithm
OU Yang,CHENG Wei,HAN Feng-qing. Fuzzy c-means Cluster Over Gentic Algorithm[J]. Journal of Chongqing University(Natural Science Edition), 2004, 27(6): 89-92
Authors:OU Yang  CHENG Wei  HAN Feng-qing
Abstract:Fuzzy c-means (FCM) algorithm is dynamic cluster algorithm whose result often is local optimal decision. There often exists insignificant clustering in the result of Fuzzy c-means algorithm when traditional union, Intersection and inclusion work in fuzzy set. Our research indicates there are no insignificant clustering in the result of Fuzzy c-means algorithm over genetic algorithm and partial optimal solution can be avoided with this algorithm to a certain extent. The coding, select, corresponding crossover and mutation operators are designed. Finally we compared the performance of GFCM and FCM with testing data. Results show that the performance of GFCM is far better than FCM.
Keywords:genetic algorithm  fuzzy c-means cluster  GFCM
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号