不完备信息条件下基于Roustida改进算法的诊断规则提取 |
| |
作者姓名: | 李金艳 余忠华 |
| |
作者单位: | 江苏科技大学经济与管理学院;浙江大学机械工程学院 |
| |
基金项目: | 江苏省高校哲学社会科学研究(2018SJA1090)第一作者:李金艳(1982-),女,汉族,山东聊城,博士,讲师,研究方向:质量监测,E-mail: lijinyan20@126.com 。 |
| |
摘 要: | 诊断决策过程本质上为信息的处理过程。由于信息结构的复杂性和采集的局限性使得获取的信息存在缺失、模糊、冗余等不完备现象,从而影响诊断的准确性。为此,对条件属性冗余、部分数据值缺失情形下,如何提高被诊断信息的完备性开展讨论,试图通过问题聚类探寻诊断决策所需的隐含规则,提出信息补齐与属性约简的知识挖掘方法:首先,针对Roustida算法在缺失值处理时存在的局限性进行改进,扩充其在工程实践中的适用范围,使缺损信息趋于完整;然后,利用遗传算法和广义诊断规则推理实现条件属性约简和规则凝练;最后,以质量问题诊断为对象进行了案例研究,测试样本诊断结果覆盖度 ,验证了不完备信息条件下该方法可以实现以相对较简方式表达问题与情境信息之间的关联关系,挖掘问题发生的隐含规律。
|
关 键 词: | 信息不完备 信息补齐 条件属性冗余 属性约简 规则提取 |
收稿时间: | 2023-01-13 |
修稿时间: | 2023-11-10 |
|
| 点击此处可从《科学技术与工程》浏览原始摘要信息 |
|
点击此处可从《科学技术与工程》下载免费的PDF全文 |
|