首页 | 本学科首页   官方微博 | 高级检索  
     

基于主成分分析的粒子滤波器目标跟踪方法
引用本文:王欣,赵连义,薛龙. 基于主成分分析的粒子滤波器目标跟踪方法[J]. 吉林大学学报(理学版), 2012, 50(6): 1156-1162
作者姓名:王欣  赵连义  薛龙
作者单位:1. ,吉林大学 计算机科学与技术学院, 长春 130012,2. ,吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012
基金项目:国家自然科学基金(批准号:60905022);吉林省科技发展计划项目(批准号:201105016)
摘    要:提出一种基于主成分分析的粒子滤波器目标跟踪新方法. 该方法将主成分分析法和传统的粒子滤波方法相结合, 避免了传统粒子滤波器的过度重采样, 提高了目标跟踪精度. 实验结果表明, 该方法对单个目标跟踪精度高, 且对多障碍物下的目标跟踪精度也较高, 适用于复杂背景下的人脸跟踪. 与传统粒子滤波方法相比, 该方法提高了目标跟踪的精度和鲁棒性, 避免了粒子退化和粒子贫化.

关 键 词:目标跟踪; 粒子滤波算法; 主成分分析法; 重采样  
收稿时间:2012-05-16

Particle Filter Algorithm Based on Principal Component Analysis
WANG Xin,ZHAO Lian-yi,XUE Long. Particle Filter Algorithm Based on Principal Component Analysis[J]. Journal of Jilin University: Sci Ed, 2012, 50(6): 1156-1162
Authors:WANG Xin  ZHAO Lian-yi  XUE Long
Affiliation:1. College of Computer Science and Technology, Jilin University, Changchun 130012, China|2. Key Laboratory ofSymbolic Computation and Knowledge Engineer of Ministry of Education, Jilin University, Changchun 130012, China
Abstract:A new principal component analysis particle filter algorithm proposed in this paper combines principal component analysis method with the traditional particle filtermethod. The proposed method avoids undue resampling and improves the accuracy of object tracking. Experimental results demonstrate that this algorithmcan acquire better precision in single object tracking and multiple|obstacle object tracking, and this algorithm could track human face accurately in complex backgrounds. Compared with present particle filter algorithm, this algorithm performs better in robustness and accuracy and avoids particledegeneration and particle impoverishment.
Keywords: object tracking  particle filter algorithm  principal component analysis  resampling  
本文献已被 CNKI 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号