首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Detection of refolding conformers of complement protein C9 during insertion into membranes
Authors:R O Laine  A F Esser
Institution:Department of Comparative and Experimental Pathology, University of Florida, Gainesville 32610.
Abstract:Human complement protein C9 is a hydrophilic serum glycoprotein responsible for efficient expression of the cytotoxic and cytolytic functions of complement. It assembles on the surface of a target cell together with C5, C6, C7 and C8 to form the membrane attack complex (MAC) and therefore has to change structure to become an integral membrane protein. As the protein assumes a stable structure in an aqueous environment, the question arises as to how it can enter the hydrophobic interior of a membrane. During MAC assembly C9 polymerizes into a circular structure, termed poly(C9) (ref. 8), which is responsible for the cylindrical electron microscopic appearance of the MAC. The suggestion has been made that C9 must at least partly unfold in order to enter a membrane and also that polymerization of the molecule is intimately linked to insertion and cytotoxicity. The extent of unfolding and the mechanism of polymerization are not understood, nor is it known precisely which parts of the molecule participate in the proposed structural changes. We have been able to capture refolding C9 conformers during membrane insertion with the help of sequence-specific anti-peptide antibodies. Some of these antibodies inhibit C9-mediated haemolysis but not C9 polymerization, while others have the opposite effect. This suggests that the two processes are independent.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号