首页 | 本学科首页   官方微博 | 高级检索  
     

具有饱和治愈率的SIS传染病模型的稳定性
引用本文:谭宏武. 具有饱和治愈率的SIS传染病模型的稳定性[J]. 宝鸡文理学院学报(自然科学版), 2013, 33(4): 3-6,10
作者姓名:谭宏武
作者单位:陕西科技大学理学院,陕西西安,710021
基金项目:陕西省教育厅科学研究项目(No.2013JK0599)
摘    要:目的 通过研究一类具有饱和治愈率的离散SIS传染病模型的稳定性,为疾控部门制定治疗传染病的方案提供了理论依据.方法 利用动力系统知识对所建立的模型进行理论分析.结果 定义了模型的基本再生数,讨论了无病平衡点和地方病平衡点的存在性和局部稳定性,以及R0<1时可能出现的后向分支.结论 不充分的治疗可能会导致传染病的持久.

关 键 词:离散传染病模型  基本再生数  稳定性  后向分支

Stability of an SIS epidemic model with saturated cure rate
TAN Hong-wu. Stability of an SIS epidemic model with saturated cure rate[J]. Journal of Baoji College of Arts and Science(Natural Science Edition), 2013, 33(4): 3-6,10
Authors:TAN Hong-wu
Affiliation:TAN Hong-wu;School of Science,Shaanxi University of Science & Technology;
Abstract:Objective--To provide the theoretical basis for CDC(Centers for Disease Contral) developing the treatment program on the epidemics by formulating and studying the stability of the discrete SIS epidemic model with the saturated cure rate. Methods--The model was discussed theoretically with the knowledge of dynamics. Results--The basic reproductive number was defined and the existence and stability conditions of the disease-free equilibrium and endemic equilibrium were obtained. Moreover, the backward bifurcation might appear as R0 〈 1 was less than 1. Conclusion--The inadequate treatment of infectious diseases may lead to the persistence of the disease.
Keywords:discrete epidemic model  basic reproductive number  stability  backward bifurcation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号