首页 | 本学科首页   官方微博 | 高级检索  
     

特征选择方法中的信号分析方法研究
引用本文:何劲松,施泽生. 特征选择方法中的信号分析方法研究[J]. 中国科学技术大学学报, 2001, 31(1): 74-78,56
作者姓名:何劲松  施泽生
作者单位:中国科学技术大学电子科学与技术系,合肥 230026
基金项目:国家自然科学基金资助项目
摘    要:特征选择是模式识别领域中最重要的环节,也是最根本的论题。论文从随机信号的傅立叶分析中自相关函数与谱密度函数之间的对应关系出发,提出了一种基于自相关函数的特征选择方法,并以实验方式进行了有效性验证。其研究意义还在于将这一特征选择方法与人工智能中的归纳学习方法相结合,其归纳性能比传统的熵最小化准则更为优越。

关 键 词:特征选择 决策树 归纳学习 模式识别 自相关函数 谱密度函数 人工智能
文章编号:0253-2778(2001)01-0074-05

Method of FeatureSelection Using Signal Analysis
HE Jing song,Shi Ze sheng. Method of FeatureSelection Using Signal Analysis[J]. Journal of University of Science and Technology of China, 2001, 31(1): 74-78,56
Authors:HE Jing song  Shi Ze sheng
Abstract:Feature selection is one of the most important issues in pattern recognition. From the viewpoint of signal analyses that there is a correlation between the signal's auto correlation function and spectrum density, a new kind of method for feature selection is presented in this paper. The validity of this method is verified through experiments. An important implication of the research work is that it finds a joint between feature selection and inductive learning using decision tree, and the result of that combination shows that it has higher performance than ID3 whose inductive strategy is the rule of minimal entropy.
Keywords:feature selection  decision tree  inductive learning
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号