首页 | 本学科首页   官方微博 | 高级检索  
     

基于动态贝叶斯网络的非常规突发灾害事故情景推演
引用本文:夏登友,钱新明,段在鹏. 基于动态贝叶斯网络的非常规突发灾害事故情景推演[J]. 东北大学学报(自然科学版), 2015, 36(6): 897-902. DOI: 10.12068/j.issn.1005-3026.2015.06.030
作者姓名:夏登友  钱新明  段在鹏
作者单位:(1. 北京理工大学 爆炸科学与技术国家重点实验室, 北京100081; 2. 中国人民武装警察部队学院 消防指挥系, 河北 廊坊065000)
基金项目:国家“十二五”科技支撑计划项目,国家自然科学基金重大研究计划集成项目
摘    要:针对非常规突发灾害事故演变路径不清晰,演变过程及发展态势复杂,应急决策主体在应急救援过程中很难做出正确决策的现状,在分析非常规突发灾害事故情景演变规律的基础上,基于情景状态(S)、处置目标(T)、处置措施(M)和自身演变(E)四个要素分析了非常规突发灾害事故情景演变的路径,基于动态贝叶斯构建了非常规突发灾害事故动态情景网络,并利用联合概率公式进行相应节点变量的状态概率计算,实现了非常规突发灾害事故的关键情景推演.以大连"7·16"油库爆炸火灾事故为例,演示了非常规突发灾害事故的情景推演流程及关键技术,并对情景推演的结果进行了分析.推演结果表明:事故按输油管线爆炸→油罐爆炸起火→原油泄漏、污染海域的路径演变;其中,输油管线爆炸出现的概率为90.2%,T103罐爆炸起火出现的概率为84.1%,原油泄漏、污染海域出现的概率为80.3%,推演结果与实际灾害事故的情景发展状态基本一致,证明了该方法的合理性和可行性.

关 键 词:情景应对  非常规突发灾害事故  演变路径  动态贝叶斯网络  情景推演  

Scenario Deduction Model of Unconventional Emergency Based on Dynamic Bayesian Network
XIA Deng-you,QIAN Xin-ming,DUAN Zai-peng. Scenario Deduction Model of Unconventional Emergency Based on Dynamic Bayesian Network[J]. Journal of Northeastern University(Natural Science), 2015, 36(6): 897-902. DOI: 10.12068/j.issn.1005-3026.2015.06.030
Authors:XIA Deng-you  QIAN Xin-ming  DUAN Zai-peng
Affiliation:1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; 2. Department of Fire Command, The Chinese People’s Armed Police Force Academy, Langfang 065000, China.
Abstract:The unclear evolution path and complex development of unconventional emergency could make it difficult for decision-makers to make right decisions. A model based on the dynamic Bayesian network was proposed to solve the key scenario deduction problems of unconventional emergency. In this model, the scenario evolution law of unconventional emergency was first analyzed to formulate the four factors including scenario situation(S), disposal target (T), disposal measure (M) and evolution (E). Then the scenario evolution path was performed based on the four factors. Finally, the state probabilities of corresponding node variables were calculated by using the joint probability formula. For the purpose of illustration and verification, the case of Dalian “7·16” oil depot fire and explosion accident was presented. The results showed that the evolution path follows oil pipeline explosion, oil tank explosion and fire, and oil spill and offshore pollution, whose probabilities are respectively 90.2%, 84.1% and 80.3%. Thus, it could be concluded that the proposed dynamic Bayesian network is both reasonable and feasible.
Keywords:scenario response  unconventional emergency  evolution path  dynamic Bayesian network  scenario deduction
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号