首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于反馈策略的自适应选择人工蜂群算法
引用本文:刘婷婷,张长胜,张斌,孙若男. 一种基于反馈策略的自适应选择人工蜂群算法[J]. 东北大学学报(自然科学版), 2015, 36(5): 618-622. DOI: 10.12068/j.issn.1005-3026.2015.05.003
作者姓名:刘婷婷  张长胜  张斌  孙若男
作者单位:(东北大学 信息科学与工程学院, 辽宁 沈阳110819)
基金项目:国家自然科学基金青年基金资助项目,中央高校基本科研业务费专项资金资助项目,沈阳市科技基金资助项目,宁夏回族自治区自然科学基金资助项目
摘    要:雇用蜂觅食策略对人工蜂群算法性能有较大影响,而单一的觅食策略难以适用于所有问题的搜索空间,并且算法运行的不同阶段所适合的搜索策略也不尽相同.因此,如何为一个给定的函数优化问题选择最佳的觅食策略尤为重要.针对这一问题,提出了一种基于反馈的觅食策略自适应人工蜂群算法SSABC,该算法能够在优化过程中为一个给定的优化问题自动选择最佳的觅食策略.实验表明,与经典ABC(artificial bee colony algorithm),PSO(particle swarm optimization),DE(differential evolution),GA(genetic algorithm)算法相比,SSABC算法的寻优能力有较大提高.

关 键 词:自适应  人工蜂群算法  反馈  函数优化  智能算法  

A Strategy Self-Adaptive Selection Bee Colony Algorithm Based on Feedback
LIU Ting-ting,ZHANG Chang-sheng,ZHANG Bin,SUN Ruo-nan. A Strategy Self-Adaptive Selection Bee Colony Algorithm Based on Feedback[J]. Journal of Northeastern University(Natural Science), 2015, 36(5): 618-622. DOI: 10.12068/j.issn.1005-3026.2015.05.003
Authors:LIU Ting-ting  ZHANG Chang-sheng  ZHANG Bin  SUN Ruo-nan
Affiliation:School of Information Science & Engineering, Northeastern University, Shenyang 110819, China.
Abstract:Employed bee foraging strategies have a greater impact on the performance of artificial bee colony algorithm. The single foraging strategy is difficult to apply to all the search space of the problems. And the different stages of the algorithm performs differently by using different employed bee foraging strategies.How to choose the best foraging strategy is very important for the given function optimization problem. To solve this problem, a strategy self-adaptive selection colony algorithm was presented, based on feedback. The optimal foraging strategy could be automatically selected for the given problem during the optimization process using the praposed algorithm. Experimental results showed that compared with the ABC (artificial bee colony algorithm), the PSO (particle swarm optimization algorithm), the DE (differential evolution algorithm), and the GA (genetic algorithm), the optimization capability of the SSABC algorithm has been improved greatly.
Keywords:self-adaptive  artificial bee colony algorithm  feedback  function optimization  intelligence algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号