首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络的胶囊内镜息肉与溃疡辅助诊断
引用本文:王孟,张大斌,刘杰民,张晖. 基于卷积神经网络的胶囊内镜息肉与溃疡辅助诊断[J]. 科学技术与工程, 2020, 20(10): 4043-4048
作者姓名:王孟  张大斌  刘杰民  张晖
作者单位:贵州大学机械工程学院,贵阳550001;贵州省人民医院,贵阳550001;贵州银行博士后流动站,贵阳550001
基金项目:贵州省研究生教育教学改革重点项目;贵州省科技计划
摘    要:针对目前胶囊内镜(WCE)自动检测方法需要对每种病灶设计对应的识别算法以及识别准确率不高的问题,设计一种基于卷积神经网络的息肉与溃疡辅助诊断算法。与传统检测算法相比,卷积神经网络可自动学习病灶图像特征,实现更强泛化能力,更高准确率和效率。该方法针对具体WCE图像,首先评价图像R、G、B通道携带信息的特征;其次,分析全局直方图均衡化、伽玛变换和拉普拉斯变换对提升图像对比度的效果,选择其中表现最佳者与信息最丰富的2个颜色通道组合成3通道输入到卷积网络中训练和识别。测试表明,本算法识别准确率96.8%,比传统的经典图像检测方法高出至少16.73%,检测速度达到68.6图/s,能够推广应用到医疗辅助诊断领域。

关 键 词:胶囊内镜  辅助诊断  RGB通道  图像对比度  卷积神经网络
收稿时间:2019-07-16
修稿时间:2019-12-01

Auxiliary diagnosis of capsule endoscopy on polyps and ulcers based on convolutional network
Wang Meng,Zhang Dabin,Liu Jiemin,Zhang Hui. Auxiliary diagnosis of capsule endoscopy on polyps and ulcers based on convolutional network[J]. Science Technology and Engineering, 2020, 20(10): 4043-4048
Authors:Wang Meng  Zhang Dabin  Liu Jiemin  Zhang Hui
Affiliation:College of Mechanical Engineering, Guizhou University,College of Mechanical Engineering, Guizhou University,Guizhou Provincial People''s Hospital,Guizhou Bank Postdoctoral Station
Abstract:In view of the problems of current capsule endoscopy (WCE) automatic detection method needs to design the corresponding identification algorithm to each lesions design and the recognition accuracy is not high, a polyps and ulcer-assisted diagnosis method based on convolutional neural network is proposed. Compared with the traditional detection algorithm, the convolutional neural network can automatically extract different lesions characteristics, with stronger robustness, higher accuracy and efficiency. This method is aimed at the specific WCE image to first compare the characteristics of the image R, G, B channel carrying information. Secondly, the effect of global histogram equalization, gamma transformation and Laplace transformation to improve image contrast is analyzed, and the two color channels with the best performance and the most informative are combined into 3 channel inputs. Enter training and recognition into the convolution network. The test results tell that the average accuracy rate of this algorithm is 96.80%, which is at least 16.73% higher than the traditional classical image detection method, and the detection speed reaches 11 graph/s, which can be applied to the field of medical auxiliary diagnosis.
Keywords:capsule endoscopy  auxiliary diagnosis  RGB channel  enhancement on contrast,  convolutional neural network
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号