首页 | 本学科首页   官方微博 | 高级检索  
     

分数布朗运动下带红利的欧式期权定价
引用本文:李蕊. 分数布朗运动下带红利的欧式期权定价[J]. 兰州理工大学学报, 2012, 38(4): 162-164
作者姓名:李蕊
作者单位:青海大学成人教育学院,青海西宁,810001
摘    要:基于股票价格遵循有分数布朗运动驱动的分数阶随机微分方程.运用Black-Scholes方程理论建立带红利的欧式看涨期权定价模型,根据分数阶随机微分方程理论将方程的求解问题转化为偏微分方程的求解问题,给出期权定价的解析解.

关 键 词:欧式期权定价  分数阶随机微分方程  分数阶高斯白噪音  分数B-S方程  分数布朗运动

European option pricing with dividend and fractional Brown motion
LI Rui. European option pricing with dividend and fractional Brown motion[J]. Journal of Lanzhou University of Technology, 2012, 38(4): 162-164
Authors:LI Rui
Affiliation:LI Rui(School of Adult Education,Qinghai University,Xining 810001,China)
Abstract:A basis was taken that the stock price should obey fractional-oder stochastic differential equations with the driving of fractional Brown motion.By using Black-Scholes equation and theory,an European option pricing model with expected price rising was established.Then the solution of the fractional-order stochastic differential equations was transformed into solving a partial differential equation and an analytic solution was given for the option pricing.
Keywords:European option pricing  fractional-order stochastic differential equation  fractional-order Gaussian white noise  fractional B-S equation  fractional Brown motion
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号