首页 | 本学科首页   官方微博 | 高级检索  
     


Multi-step forecast error variances for periodically integrated time series
Authors:Philip Hans Franses
Abstract:A periodically integrated (PI) time series process assumes that the stochastic trend can be removed using a seasonally varying differencing filter. In this paper the multi-step forecast error variances are derived for a quarterly PI time series when low-order periodic autoregressions adequately describe the data. The forecast error variances display seasonal variation, indicating that observations in some seasons can be forecast more precise than those in others. Two examples illustrate the empirical relevance of calculating forecast error variances. A by-product of the analysis is an expression for the seasonally varying impact of the stochastic trend.
Keywords:seasonality  periodic integration  forecasts
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号