首页 | 本学科首页   官方微博 | 高级检索  
     

基于两点的时间序列相似性研究
引用本文:刘永志. 基于两点的时间序列相似性研究[J]. 盐城工学院学报(自然科学版), 2014, 27(4): 1-4
作者姓名:刘永志
作者单位:南京航空航天大学计算机科学与技术学院,江苏南京210016;宣城职业技术学院信息工程系,安徽宣城242000
基金项目:安徽省质量工程项目(20101452);安徽高校基金重点课题(KJ2014A285)
摘    要:目前,时间序列相似性判定大多采用欧式距离和动态时间弯曲DTW(DynamicTimeWar.ping)方法,这两种方法均存在一定缺陷。欧式距离要求序列长度一样,垂直移动序列将影响相似性判定和阈值设置的经验性;动态弯曲距离对欧式距离进行了优化,避免了欧式长度的一致性,但其他两个缺点仍然存在且计算复杂度增加。提出了一种新的基于两点时间序列相似性算法,可计算任意两序列的相似度。首先分析了两点组成的序列形态,提出了相似性判定方法TPSS(TwoPointsSegmentationSimilarity);其次为提高相似性判定的鲁棒性,减少人为阈值设置的影响,对TPSS进行了拓展;最后给出了算法及实验分析。实验结果表明,该算法能很好地判定任意序列的相似性,提高了鲁棒性及减少人为干预,对数据挖掘中的聚类与预测有很好的帮助作用。

关 键 词:时间序列  相似性  数据挖掘  比值序列

Research on the Similarity in Time Series Data with Two Points
LIU Yongzhi. Research on the Similarity in Time Series Data with Two Points[J]. Journal of Yancheng Institute of Technology(Natural Science Edition), 2014, 27(4): 1-4
Authors:LIU Yongzhi
Affiliation:LIU Yongzhi;College of Computer Science and Technology ,Nanjing University of Aeronautics and Astronautics;Department of Information Engineering,Xuancheng Vocational & Technical College;
Abstract:At present, the judgement of the similarity of time series is based on Euclidean distance and DTW ( Dynamic Time Warping). These two kinds of methods have some defects. Euclidean distance request the same length of sequence, vertical movement will affect similarity judgment of sequence. Anyone set the threshold of the empirical is difference ; DTW is optimized of the Euclidean distance to avoid the consistency of European length. But the other two disadvantages still exist and the computa- tional complexity is increased. This paper proposes a novel similarity algorithm of time series based on the two points, it can cal- culate any of the two sequence similarity. First, it analyzes the time series form of two points, put forward TPSS method. Second- ly, in order to improve the robustness of the similar judgment, reduce the influence of artificial threshold setting, TPSS is devel- oped. Finally, it gives the algorithm and experiment analysis. The experimental results show that tThis algorithm can effectively determine the similarity of arbitrary sequences, improves the robustness and reduces human intervention and can help clustering, prediction in data mining.
Keywords:Time series  Similarity  Data mining  Two points Ratio series
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《盐城工学院学报(自然科学版)》浏览原始摘要信息
点击此处可从《盐城工学院学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号