首页 | 本学科首页   官方微博 | 高级检索  
     

露天矿卡车外排土场内部运距预测模型
引用本文:白润才,柴森霖,刘光伟,付恩三,赵景昌,曹博. 露天矿卡车外排土场内部运距预测模型[J]. 重庆大学学报(自然科学版), 2019, 42(2): 112-122
作者姓名:白润才  柴森霖  刘光伟  付恩三  赵景昌  曹博
作者单位:辽宁工程技术大学 辽宁省高等学校矿产资源开发利用技术及装备研究院,辽宁 阜新,123000;辽宁工程技术大学 矿业学院,辽宁 阜新,123000;中华人民共和国应急管理部信息研究院,北京,100029
基金项目:国家自然科学基金资助项目(51304104);辽宁省教育厅基金资助项目(LJYL038,LJ2017FAL015);辽宁省煤炭资源安全开采与洁净利用工程研究中心开放基金资助项目(TU15KF07)。
摘    要:为有效提高外排土场物料移运规划中运输功能耗模型的精度,以建立更为详细的排弃物料堆置次序优化、规划模型,针对年末排土计划中尚缺乏逐条带运距推估方法的问题展开研究,提出一种采用极限学习机算法(ELM)训练多元非线性运距曲线的预测模型,并将年末排土工程计划位置上已设计运输线路的排土条带作为训练样本,训练预测模型学习运距与影响因子间的时变特征,最终通过非线性运距表达推估待排物料块体的时变运距。为进一步增强ELM算法的预测精度,利用改进粒子群算法建立基于结构风险最小化的参数优化算法,改善了传统经验风险最小化算法的泛化能力,提高了算法预测精度。研究结果表明:采用模拟试算图解法最终确定ELM模型隐含层节点数为27;仿真测试中得出文中算法预测精度评价指标分别为均方误差0.006 8、拟合优度0.995 3、相对误差期望0.027%、绝对误差期望0.62、错估系数0.03、执行效率1.49s;对比多组智能算法预测模型,其绝对误差分别0.116 2、0.094 7、0.139 1,其错估系数分别为0.230、0.200、0.266,算法明显具有更好的预测效果。

关 键 词:卡车外排土场  运距预测  极限学习机算法  改进粒子群算法
收稿时间:2018-07-03

A prediction model of the truck dumping haul distance in open-pit mine
BAI Runcai,CHAI Senlin,LIU Guangwei,FU Ensan,ZHAO Jingchang and CAO Bo. A prediction model of the truck dumping haul distance in open-pit mine[J]. Journal of Chongqing University(Natural Science Edition), 2019, 42(2): 112-122
Authors:BAI Runcai  CHAI Senlin  LIU Guangwei  FU Ensan  ZHAO Jingchang  CAO Bo
Affiliation:Liaoning Academy of Mineral Resources Development and Utilization Technology and Equipment Research Institute, Liaoning Technical University, Fuxin 123000, Liaoning, P. R. China,School of Mining, Liaoning Technical University, Fuxin 123000, Liaoning, P. R. China,School of Mining, Liaoning Technical University, Fuxin 123000, Liaoning, P. R. China,Information Research Institute of the Ministry of Emergency Management of the People''s Republic of China, Beijing 100029, P. R. China,Liaoning Academy of Mineral Resources Development and Utilization Technology and Equipment Research Institute, Liaoning Technical University, Fuxin 123000, Liaoning, P. R. China and School of Mining, Liaoning Technical University, Fuxin 123000, Liaoning, P. R. China
Abstract:In order to effectively improve the accuracyof transportationfunction consumption models, open-pit designer can establish a more detailed material transportation planning model for theproblems that cannot be solved for lack ofestimation method of strip-by-strip transport distance in the annual plan. In this paper a prediction model of multivariate nonlinear haul distance curve trained by extreme learning machine was proposed. The dump strip on transport line designed for year-end dump project location was taken as the training samplesto train prediction model to learn the time varying trait of hual distance and influence factor. Finally, the nonlinear estimation of haul distance expression was used to predict block variable distance. In order to enhance the prediction accuracy of the ELM algorithm,the modified particle swarm optimization algorithm was adopted to build the model of parameters optimization aimed at structural risk minimization and realized the structural risk correction to improve the accuracy of prediction algorithm. The results show that the method of ELM model ultimately determine the number of hidden layer nodes to be 27 through the test of simulation by trial and graphic test.The evaluation indexesof algorithm prediction accuracy (mean square error, goodness of fit, relative error expectation, absolute error expectation, misestimation coefficient, execution efficiency) are 0.006 8, 0.995 3, 0.027%, 0.62,0.03 and 1.49 srespectively.Compared with other prediction model of intelligent algorithm,their absolute error are 0.116 2, 0.094 7, 0.139 1 and the coefficient of miscalculation are 0.230, 0.200, 0.266. In conclusion, the algorithm has better prediction effect obviously.
Keywords:truck dumping  haul distance prediction  ELM  MPSO
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号