首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rheological behavior of mammalian cells
Authors:D Stamenovi?
Institution:(1) Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA
Abstract:Rheological properties of living cells determine how cells interact with their mechanical microenvironment and influence their physiological functions. Numerous experimental studies have show that mechanical contractile stress borne by the cytoskeleton and weak power-law viscoelasticity are governing principles of cell rheology, and that the controlling physics is at the level of integrative cytoskeletal lattice properties. Based on these observations, two concepts have emerged as leading models of cytoskeletal mechanics. One is the tensegrity model, which explains the role of the contractile stress in cytoskeletal mechanics, and the other is the soft glass rheology model, which explains the weak power-law viscoelasticity of cells. While these two models are conceptually disparate, the phenomena that they describe are often closely associated in living cells for reasons that are largely unknown. In this review, we discuss current understanding of cell rheology by emphasizing the underlying biophysical mechanism and critically evaluating the existing rheological models. Received 25 May 2008; received after revision 19 June 2008; accepted 1 July 2008
Keywords:" target="_blank">    Cytoskeleton  prestress  power law  tensegrity  soft glass rheology  actin networks  viscoelasticity  contractility
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号