首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进多目标粒子群算法的家庭用电时段优化
引用本文:闫秀英,党苗苗. 基于改进多目标粒子群算法的家庭用电时段优化[J]. 系统仿真学报, 2022, 34(1): 70-78. DOI: 10.16182/j.issn1004731x.joss.20-0681
作者姓名:闫秀英  党苗苗
作者单位:1.西安建筑科技大学 建筑设备科学与工程学院,陕西 西安710055;2.西安建筑科技大学 信息控制与工程学院,陕西 西安 710055
基金项目:国家十三五科技支撑项目子课题(2016YFC0700208-03);陕西省低能耗建筑节能创新示范工程项目研究(2017ZDXM-GY-025)。
摘    要:为解决家庭用电负荷的调度优化问题,综合考虑用电成本、满意度以及用户侧波动程度3个目标进行优化。提出改进自适应权重多目标粒子群算法(improved adaptive weighted multi-objective particle swarm optimization, IAW-MOPSO)求解模型,通过对粒子的适应度值分段更新惯性权重,均衡了粒子群算法的局部改良能力和全局搜索能力,在保证得到全局最优解的同时完成对家用电器的优化调度。结果表明:该优化策略降低了29%的电费,保障了高峰时期用电的稳定性,用户满意度明显增加,验证了所提模型的有效性以及算法的优越性。

关 键 词:家庭能源管理  用电调度  多目标优化  自适应权重  满意度
收稿时间:2020-09-09

Optimization of Household Electricity Consumption Period Based on Improved Multi-objective Particle Swarm Optimization
Yan Xiuying,Dang Miaomiao. Optimization of Household Electricity Consumption Period Based on Improved Multi-objective Particle Swarm Optimization[J]. Journal of System Simulation, 2022, 34(1): 70-78. DOI: 10.16182/j.issn1004731x.joss.20-0681
Authors:Yan Xiuying  Dang Miaomiao
Affiliation:1. School of Construction Equipment Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;2. School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
Abstract:Aiming at the household power load scheduling optimization, three objectives of the cost of electricity, satisfaction and user-side fluctuation degree are taken into comprehensive account. An improved adaptive weight multi-objective particle swarm optimization (IAW-MOPSO) algorithm is proposed to realize the scheduling optimization of household power load. The local improvement ability and global search ability of particle swarm optimization are balanced by updating the inertia weight of particle fitness value. The simulation results of five groups show that the proposed optimization strategy reduces the electricity charge by 29%, ensures the stability of electricity consumption in the peak period, and obviously increases the user satisfaction, which verifies the validity of the proposed model and the superiority of the algorithm.
Keywords:home energy management  electricity dispatch  multi-objective optimization  adaptive weight  satisfaction
本文献已被 维普 等数据库收录!
点击此处可从《系统仿真学报》浏览原始摘要信息
点击此处可从《系统仿真学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号