首页 | 本学科首页   官方微博 | 高级检索  
     

一种分析全基因组上位性的新方法
作者姓名:李泽军  陈敏    曾利军
作者单位:(1.湖南大学 信息科学与工程学院,湖南 长沙410082;2.湖南工学院 计算机科学与信息学院,湖南 衡阳421002)
摘    要:传统基于单位点的全基因组关联研究存在重复性低、难以解释性等缺陷,而采用基于机器学习的上位性分析中面临计算复杂度高、预测准确度不足等问题.本文提出一种分析全基因组上位性的新方法,该方法采用二阶段框架的上位性分析方法,它包含特征过滤阶段以及上位性组合优化阶段,在特征过滤阶段提出了多准则融合策略,从多个不同角度评价遗传变异位点,以保证易感的弱效位点能被保留,然后采用多准测排序融合策略剔除与疾病状态关联程度低的遗传变异,进一步在上位性组合优化阶段采用贪婪算法启发式地搜索组合空间,以降低时间复杂度,最后采用支持向量机作为上位性评价模型.实验中采用不同的连锁不平衡参数与经典算法SNPruler与ACO的性能进行对比,实验结果表明:本文方法能有效保留弱效位点,一定程度上提高了疾病预测的正确度.

关 键 词:全基因组关联研究  上位性  复杂疾病  智能计算
本文献已被 CNKI 等数据库收录!
点击此处可从《湖南大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《湖南大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号