首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进随机森林的电力系统暂态稳定评估
引用本文:刘炼,王强,陈浩. 基于改进随机森林的电力系统暂态稳定评估[J]. 科学技术与工程, 2022, 22(11): 4367-4374
作者姓名:刘炼  王强  陈浩
作者单位:三峡大学电气与新能源学院,宜昌443002
基金项目:国网江西省电力有限公司科技项目(5218F0180049)
摘    要:针对传统基于机器学习的电力系统暂态稳定评估方法存在准确率偏低和泛化能力不足的问题,提出了一种基于特征选择和改进随机森林的在线暂态稳定评估方法。首先,通过最大化联合互信息挖掘电网运行数据之间的相关性,筛选出具有代表性的关键特征子集;然后,考虑到电力系统数据库中稳定样本与失稳样本之间的类别不平衡问题,通过改进bootstrap抽样和对决策树进行加权处理,增强随机森林对失稳样本的识别能力;最后,基于改进的随机森林算法,建立关键特征数据与暂态稳定标签之间的映射关系。实验结果表明,所提方法具有较高的准确性和较强的鲁棒性,能够满足在线应用的需求。

关 键 词:暂态稳定评估  机器学习  特征选择  类别不平衡  最大化联合互信息  随机森林
收稿时间:2021-07-25
修稿时间:2022-03-26

Transient Stability Assessment of Power System Based on Improved Random Forest
Liu Lian,Wang Qiang,Chen Hao. Transient Stability Assessment of Power System Based on Improved Random Forest[J]. Science Technology and Engineering, 2022, 22(11): 4367-4374
Authors:Liu Lian  Wang Qiang  Chen Hao
Affiliation:College of Electrical Engineering and New Energy,China Three Gorges University
Abstract:To solve the problems of low accuracy and insufficient generalization ability of traditional power system transient stability assessment methods based on machine learning, an online transient stability assessment method based on feature selection and improved random forest was proposed. Firstly, the joint mutual information maximisation was used to mine the correlation between grid operation data to select the representative key feature subset. Then, considering the class imbalance between stable samples and unstable samples in the database of the power system, the ability of the random forest to identify unstable samples was enhanced by improving bootstrap sampling and weighting the decision tree. Finally, the mapping relationship between key feature data and transient stability label was established based on the improved random forest algorithm. The test results show that the proposed method has high accuracy and strong robustness, which can meet the requirements of online application.
Keywords:transient stability assessment   machine learning   feature selection   class imbalance   joint mutual information maximisation   random forest
本文献已被 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号